Chemistry
Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 13, Problem 19QP
Interpretation Introduction

Interpretation:

The molality of each of the given aqueous solutions is to be calculated.

Concept introduction:

Molality is the ratio of thenumber of moles of solute to the mass of the solvent in kg.

The formula to calculate molality (m) is as follows:

m=moles of solutemass of solvent(in kg) `…… (1)

Moles (n) are expressed in terms of mass and molar mass as follows:

n=massmolar mass …… (2)

Expert Solution & Answer
Check Mark

Answer to Problem 19QP

Solution:

a) 1.7 m

b) 0.87 m

c) 7.0 m

Explanation of Solution

a) 1.22 M sugar (C12H22O11) solution

The molarity of the sugar solution is 1.22 M thatmeans 1.22 mol of sugar is present in 1 L of solution.

The density of the solution is 1120 g/L.

Calculate the mass of the solution as follows:

(1 L×1120 gL)=1120 g

Rearrange the equation (2) for mass as follows:

mass=n×molar mass

The molar mass of sugar (C12H22O11) is 342 g/mol.

Substitute 1.22 mol for n and 342 g/mol for molar mass in the above equation as follows:

mass=1.22 mol×342 g/mol=417.2 g

Now, calculate the mass of the solvent as follows:

Mass of solvent=Mass of solutionmass of solute

Substitute 1120 g for the mass of solution and 417.2 g for the mass of solute in the above expression

Mass of solvent=1120 g417.2 g=702.8 g

The relation between g and kg is as follows:

1 g =103 kg

Convert 702.8 g to kg:

702.8 g×103 kg1 g=0.7028 kg

Substitute 1.22 mol for moles of solute and 0.7028 kg for the mass of the solvent in equation (1)

m=1.22 mol0.7028 kg =1.7 m

b) 0.87 M NaOH solution.

The molarity of NaOH solution is 0.87 M, which means that 0.87 mol of NaOH is present in 1 L of solution.

The density of the solution is 1040 g/L.

The mass of the solution as follows:

(1 L×1040 gL)=1040 g

Rearrange the equation (2) for mass as follows:

mass=n×molar mass

The molar mass of NaOH is 40 g/mol.

Substitute 0.87 M for n and 40 g/mol for molar mass in the above equation

mass=0.87 mol×40 g/mol=34.8 g

Now, calculate the mass of the solvent as follows:

Mass of solvent=Mass of solutionmass of solute

Substitute 1040 g for the mass of the solution and 34.8 g for the mass of thesolute in the above expression

Mass of solvent=1040 g34.8 g=1005.2 g

The relation between g and kg is as follows:

1 g =103 kg

Convert 702.8 g to kg as follows:

1005.2 g×103 kg1 g=1.0052 kg

Substitute 0.87 mol for moles of solute and 1.0052 kg for the mass of solvent in equation (1)

m=(0.87 mol1.0052 kg )=0.87 m

c) 5.24 M NaHCO3 solution.

The molarity of NaHCO3 solution is 5.24 M, that is, 5.24 mol of NaHCO3 is present in 1 L of solution.

The density of the solution is 1190 g/L.

Calculate the mass of the solution as follows:

(1 L×1190 gL)=1190 g

Rearrange the equation (2) for mass.

mass=n×molar mass

The molar mass of NaHCO3 is 84 g/mol.

Substitute 5.24 mol for n and 84 g/mol for molar mass in the above equation

mass=5.24 mol×84 g/mol=440.2 g

Now, calculate the mass of solvent using the expression shown below:

Mass of solvent=Mass of solutionmass of solute

Substitute 1190 g for the mass of the solution and 440.2 g for the mass of solute in the above expression

Mass of solvent=1190 g440.2 g=749.8 g

The relation between g and kg is as follows:

1 g =103 kg

Convert 749.8 g to kg as follows:

(749.8 g×103 kg1 g)=0.7498 kg

Substitute 5.24 mol for the moles of solute and 0.7498 kg for the mass of solvent in equation (1)

m=(5.24 mol0.7498 kg )=7.0 m

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Complete the following synthesis. (d). H+ ง с
Can the target compound be efficiently synthesized in good yield from the substituted benzene of the starting material?  If yes, draw the synthesis. Include all steps and all reactants.
This is a synthesis question.  Why is this method wrong or worse than the "correct" method?  You could do it thiss way, couldn't you?

Chapter 13 Solutions

Chemistry

Ch. 13.3 - Practice Problem CONCEPTUALIZE The diagrams...Ch. 13.3 - Prob. 1CPCh. 13.3 - What is the molality of a solution prepared by...Ch. 13.3 - Prob. 3CPCh. 13.3 - Prob. 4CPCh. 13.4 - Practice ProblemATTEMPT Calculate the...Ch. 13.4 - Prob. 1PPBCh. 13.4 - Practice Problem CONCEPTUALIZE The first diagram...Ch. 13.4 - The solubility of N2 in water at 25°C and an N 2...Ch. 13.4 - Calculate the molar concentration of O 2 in water...Ch. 13.5 - Practice ProblemATTEMPT Calculate the vapor...Ch. 13.5 - Prob. 1PPBCh. 13.5 - Practice ProblemCONCEPTUALIZE The diagrams...Ch. 13.5 - 13.5.1 A solution contains 75.0 g of glucose...Ch. 13.5 - Determine the boiling point and the freezing point...Ch. 13.5 - 13.5.3 Calculate the osmotic pressure of a...Ch. 13.5 - 13.5.4 A 1.00-m solution of has a freezing point...Ch. 13.6 - Prob. 1PPACh. 13.6 - Prob. 1PPBCh. 13.6 - Practice Problem CONCEPTUALIZE The diagrams...Ch. 13.6 - 13.6.1 A solution made by dissolving 14.2 g of...Ch. 13.6 - Prob. 2CPCh. 13.7 - Practice ProblemATTEMPT The freezing-point...Ch. 13.7 - Practice ProblemBUILD Using the experimental van't...Ch. 13.7 - Practice Problem CONCEPTUALIZE The diagram...Ch. 13.8 - Practice ProblemATTEMPT Determine the osmotic...Ch. 13.8 - Practice Problem BUILD Determine the...Ch. 13.8 - Practice Problem CONCEPTUALIZE The first diagram...Ch. 13.9 - Practice Problem ATTEMPT Calculate the molar mass...Ch. 13.9 - Practice Problem BUILD What mass of naphthalene...Ch. 13.9 - Practice Problem CONCEPTUALIZE The first diagram...Ch. 13.10 - Practice Problem ATTEMPT A solution made by...Ch. 13.10 - Practice Problem BUILD What mass of insulin must...Ch. 13.10 - Practice ProblemCONCEPTUALIZE The first diagram...Ch. 13.11 - Practice Problem ATTEMPT An aqueous solution that...Ch. 13.11 - Practice Problem BUILD An aqueous solution that is...Ch. 13.11 - Practice Problem CONCEPTUALIZE The diagrams...Ch. 13 - Which of the following processes is accompanied by...Ch. 13 - 13.2 For each of the processes depicted here,...Ch. 13 - 13.3 For each of the processes depicted here,...Ch. 13 - Prob. 4KSPCh. 13 - Describe and give examples of an unsaturated...Ch. 13 - Prob. 2QPCh. 13 - Prob. 3QPCh. 13 - Prob. 4QPCh. 13 - Prob. 5QPCh. 13 - As you know, some solution processes are...Ch. 13 - Prob. 7QPCh. 13 - 13.8 Describe the factors that affect the...Ch. 13 - Prob. 9QPCh. 13 - Prob. 10QPCh. 13 - Prob. 11QPCh. 13 - Prob. 12QPCh. 13 - Prob. 13QPCh. 13 - Prob. 14QPCh. 13 - Prob. 15QPCh. 13 - Prob. 16QPCh. 13 - Prob. 17QPCh. 13 - Prob. 18QPCh. 13 - Prob. 19QPCh. 13 - Prob. 20QPCh. 13 - 13.21 The alcohol content of hard liquor is...Ch. 13 - Prob. 22QPCh. 13 - Prob. 23QPCh. 13 - 13.24 The density of an aqueous solution...Ch. 13 - Prob. 25QPCh. 13 - Prob. 26QPCh. 13 - Prob. 27QPCh. 13 - What is thermal pollution? Why is it harmful to...Ch. 13 - Prob. 29QPCh. 13 - A student is observing two beakers of water. One...Ch. 13 - Prob. 31QPCh. 13 - Prob. 32QPCh. 13 - The solubility of KNO 3 is 155 g per 100 g of...Ch. 13 - Prob. 34QPCh. 13 - 13.35 The solubility of in water at What is its...Ch. 13 - Prob. 36QPCh. 13 - Prob. 37QPCh. 13 - Prob. 38QPCh. 13 - Prob. 39QPCh. 13 - Prob. 40QPCh. 13 - Prob. 41QPCh. 13 - Prob. 42QPCh. 13 - Prob. 43QPCh. 13 - Prob. 44QPCh. 13 - Prob. 45QPCh. 13 - 13.46 Write the equations relating boiling-point...Ch. 13 - Prob. 47QPCh. 13 - Prob. 48QPCh. 13 - Prob. 49QPCh. 13 - Prob. 50QPCh. 13 - Prob. 51QPCh. 13 - Prob. 52QPCh. 13 - Prob. 53QPCh. 13 - What are ion pairs? What effect does ion-pair...Ch. 13 - Prob. 55QPCh. 13 - Prob. 56QPCh. 13 - 13.57 A solution is prepared by dissolving 396 g...Ch. 13 - Prob. 58QPCh. 13 - Prob. 59QPCh. 13 - Prob. 60QPCh. 13 - Prob. 61QPCh. 13 - Prob. 62QPCh. 13 - Prob. 63QPCh. 13 - 13.64 How many liters of the antifreeze ethylene...Ch. 13 - Prob. 65QPCh. 13 - Prob. 66QPCh. 13 - Prob. 67QPCh. 13 - Prob. 68QPCh. 13 - 13.69 Both and are used to melt ice on roads and...Ch. 13 - Prob. 70QPCh. 13 - Prob. 71QPCh. 13 - Prob. 72QPCh. 13 - Prob. 73QPCh. 13 - Calculate the difference in osmotic pressure (in...Ch. 13 - 13.75 Which of the following aqueous solutions has...Ch. 13 - Prob. 76QPCh. 13 - 13.77 Arrange the following solutions in order of...Ch. 13 - Prob. 78QPCh. 13 - Indicate which compound in each of the following...Ch. 13 - Prob. 80QPCh. 13 - Prob. 81QPCh. 13 - Prob. 82QPCh. 13 - Prob. 83QPCh. 13 - The elemental analysis of an organic solid...Ch. 13 - 13.85 A solution of 2.50 g of a compound having...Ch. 13 - 13.86 The molar mass of benzoic acid determined...Ch. 13 - 13.87 A solution containing 0.8330 g of a polymer...Ch. 13 - Prob. 88QPCh. 13 - A solution of 6.85 g of a carbohydrate in 100.0 g...Ch. 13 - Prob. 90QPCh. 13 - Prob. 91QPCh. 13 - Prob. 92QPCh. 13 - Prob. 93QPCh. 13 - Prob. 94QPCh. 13 - Prob. 95APCh. 13 - Prob. 96APCh. 13 - 13.97 Acetic acid is a polar molecule and can form...Ch. 13 - Prob. 98APCh. 13 - Prob. 99APCh. 13 - Prob. 100APCh. 13 - Prob. 101APCh. 13 - Prob. 102APCh. 13 - Prob. 103APCh. 13 - Prob. 104APCh. 13 - Prob. 105APCh. 13 - A solution of 1.00 g of anhydrous aluminum...Ch. 13 - Explain why reverse osmosis is (theoretically)...Ch. 13 - A 1.32-g sample of a mixture of cyclohexane ( C 6...Ch. 13 - Prob. 109APCh. 13 - Prob. 110APCh. 13 - Prob. 111APCh. 13 - Prob. 112APCh. 13 - Prob. 113APCh. 13 - Prob. 114APCh. 13 - Prob. 115APCh. 13 - Iodine ( I 2 ) is only sparingly soluble in water...Ch. 13 - Concentrated hydrochloric acid is usually...Ch. 13 - Explain each of the following statements: (a) The...Ch. 13 - A mixture of NaCl and sucrose ( C 12 H 22 O 12 )...Ch. 13 - Prob. 120APCh. 13 - At 27°C, the vapor pressure of pure water is 23.76...Ch. 13 - A nonvolatile organic compound Z was used to make...Ch. 13 - Prob. 123APCh. 13 - Prob. 124APCh. 13 - Prob. 125APCh. 13 - Prob. 126APCh. 13 - Prob. 127APCh. 13 - Prob. 128APCh. 13 - Prob. 129APCh. 13 - Prob. 130APCh. 13 - Prob. 131APCh. 13 - Consider the three mercury manometers shown in the...Ch. 13 - Prob. 133APCh. 13 - Prob. 134APCh. 13 - Prob. 135APCh. 13 - 13.136 In the apparatus shown, what will happen if...Ch. 13 - Prob. 137APCh. 13 - Prob. 138APCh. 13 - Lysozyme is an enzyme that cleaves bacterial cell...Ch. 13 - Prob. 140APCh. 13 - Prob. 141APCh. 13 - Prob. 142APCh. 13 - Prob. 143APCh. 13 - Prob. 144APCh. 13 - Prob. 145APCh. 13 - What masses of sodium chloride, magnesium...Ch. 13 - Prob. 147APCh. 13 - Prob. 148APCh. 13 - Prob. 149APCh. 13 - Hemoglobin, the oxygen-transport protein, binds...Ch. 13 - Prob. 151APCh. 13 - 13.152 The vapor pressure of ethanol and the...Ch. 13 - Prob. 153APCh. 13 - A mixture of two volatile liquids is said to be...Ch. 13 - A mixture of two volatile liquids is said to be...Ch. 13 - Prob. 3SEPPCh. 13 - Prob. 4SEPP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning