Concept explainers
Interpretation: The amount of nitrogen gas released in litres is to be calculated.
Concept introduction:
The solubility of gas depends upon the pressure of a gas.
The relation between solubility and pressure of a gas is expressed as follows:
Here,
Answer to Problem 36QP
Solution:
Explanation of Solution
Given: The solubility of
in blood is
The total volume of blood in body is
In liquid, the solubility of a gas is directly proportional to the pressure of the gas, which is expressed as follows:
Here,
Substitute
for
for
So, the Henry’s law constant is
At
Substitute
for
for
So, the concentration of nitrogen in blood is
At
The number of moles of nitrogen in blood is given as follows:
Substitute
for
and
for
in equation (2) as follows:
At
The number of moles of nitrogen in blood is given as follows:
Substitute
for
and
for
in equation (3) as follows:
The amount of nitrogen released in number of moles is calculated as follows:
The ideal gas equation is represented as follows:
Here,
is the pressure,
is the volume,
is the number of moles of nitrogen,
is the gas constant, and
is the temperature.
Substitute
for
for
for
for
in equation (4) as follows:
The amount of nitrogen gas released in litres is
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry
- Calculate the molality of a solution made by dissolving 115.0 g ethylene glycol, HOCH2CH2OH, in 500. mL water. The density of water at this temperature is 0.978 g/mL. Calculate the molarity of the solution.arrow_forwardSamples of each of the substances listed below are dissolved in 125 g of water. Which of the solutions has the highest boiling point? (a) 3.0 g sucrose, C12H22O11 (b) 1.0 g glycerol, C3H3(OH)3 (c) 1.0 g propylene glycol, C3H6(OH)2 (d) 2.0 g glucose, C6H12(OH)2arrow_forwardThe dispersed phase of a certain colloidal dispersion consists of spheres of diameter 1.0 102 nm. (a) What are the volume (V=43r2) and surface area (A = r2) of each sphere? (b) How many spheres are required to give a total volume of 1.0 cm3? What is the total surface area of these spheres in square meters?arrow_forward
- What is the freezing point and normal boiling point of a solution made by adding 39 mL of acetone, C3H6O, to 225 mL of water? The densities of acetone and water are 0.790 g/cm3 and 1.00 g/cm3, respectively.arrow_forward6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forwardPredict the relative solubility of each compound in the two solvents, on the basis of intermolecular attractions. (a) Is Br2 more soluble in water or in carbon tetrachloride? (b) Is CaCl2 more soluble in water or in benzene (C6H6)? (c) Is chloroform (CHCl3) more soluble in water or in diethyl ether [(C2H5)2O]? (d) Is ethylene glycol (HOCH2CH2OH) more soluble in water or in benzene (C6H6)?arrow_forward
- Acetone, CH3COCH3, is quite soluble in water. Explain why this should be so.arrow_forwardA CaCl2 solution at 25C has an osmotic pressure of 16 atm and a density of 1.108 g/mL. What is the freezing point of this solution?arrow_forwardA forensic chemist is given a white solid that is suspected of being pure cocaine (C17H21NO4, molar mass = 303.35 g/mol). She dissolves 1.22 0.01 g of the solid in 15.60 0.01 g benzene. The freezing point is lowered by 1.32 0.04C. a. What is the molar mass of the substance? Assuming that the percent uncertainty in the calculated molar mass is the same as the percent uncertainty in the temperature change, calculate the uncertainty in the molar mass. b. Could the chemist unequivocally state that the substance is cocaine? For example, is the uncertainty small enough to distinguish cocaine from codeine (C18H21NO3, molar mass = 299.36 g/mol)? c. Assuming that the absolute uncertainties in the measurements of temperature and mass remain unchanged, how could the chemist improve the precision of her results?arrow_forward
- Consider the following aqueous solutions: (i) 0.20 m HOCH2CH2OH (nonvolatile, nonelectrolyte); (ii) 0.10 m CaCl2 (iii) 0.12 m KBr; and (iv) 0.12 m Na2SO4. (a) Which solution has the highest boiling point? (b) Which solution has the lowest freezing point? (c) Which solution has the highest water vapor pressure?arrow_forwardCalculate the freezing point of 525 g of water that contains 25.0 g of NaCl. Assume i, the vant Hoff factor, is 1.85 for NaCl.arrow_forwardPredict the relative solubility of each compound in the two solvents, on the basis of intermolecular attractions. (a) Is NaCl more soluble in water or in carbon tetrachloride? (b) Is I2 more soluble in water or in toluene (C6H5CH3)? (c) Is ethanol (C2H5OH) more soluble in hexane or in water? (d) Is ethylene glycol (HOCH2CH2OH) more soluble in ethanol or in benzene (C6H6)?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning