EBK CHEMISTRY: AN ATOMS FIRST APPROACH
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
2nd Edition
ISBN: 9780100552234
Author: ZUMDAHL
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 109E
Interpretation Introduction

Interpretation: The pH of the given H2S solution and the [S2] is to be calculated.

Concept introduction: The pH of a solution is defined as a figure that expresses the acidity of the alkalinity of a given solution.

The pH of a solution is calculated by the formula, pH=log[H+]

At equilibrium, the equilibrium constant expression is expressed by the formula,

Ka=ConcentrationofproductsConcentrationofreactants

Expert Solution & Answer
Check Mark

Answer to Problem 109E

Answer

The pH of the given solution is 4.0_ and the [S2] is 1.0×10-19M_ .

Explanation of Solution

Explanation

To determine: T The pH of the given H2S solution and the [S2] .

The equilibrium constant expression for the initial dissociation reaction is,

Ka=[H+][HS][H2S]

The initial dissociation reaction is,

H2S(aq)H+(aq)+HS(aq)

At equilibrium, the equilibrium constant expression is expressed by the formula,

Ka=ConcentrationofproductsConcentrationofreactants

Where,

  • Ka is the acid dissociation constant.

The equilibrium constant expression for the given reaction is,

Ka=[H+][HS][H2S] (1)

The [H+] from first reaction is 1.0×10-4M_ .

The change in concentration of H2S is assumed to be x .

The ICE table for the stated reaction is,

H2S(aq)H+(aq)+HS(aq)Inititialconcentration0.1000Changex+x+xEquilibriumconcentration0.10xxx

The equilibrium concentration of [H2S] is (0.10x)M .

The equilibrium concentration of [H+] is xM .

The equilibrium concentration of [HS] is xM .

The Ka for the first reaction is given to be is 1.0×107 .

Substitute the value of Ka , [H2S] , [H+] and [HS] in equation (1).

1.0×107=[x][x][0.10x]1.0×107=[x]2[0.10x]

The value of x will be very small as compared to 0.10 . Hence, it is ignored from the term [0.10x] .

Simplify the above expression.

1.0×107=[x]2[0.10][x]2=(1.0×108)[x]=1.0×10-4M_

Therefore, the [H+] from the first reaction is 1.0×10-4M_ .

The initial [HS] is 1.0×10-4M_ .

According to the ICE table formed,

The [HS] is equal to the [H+] ,that is 1.0×104M .

This is the initial [HS] for the further reaction.

The [H+] from second reaction is 1.0×10-19M_ .

The change in concentration of HS is assumed to be y .

The ICE table for the stated reaction is,

HS(aq)H+(aq)+S2(aq)Inititial1.0×1041.0×1040Changey+y+yEquilibrium(1.0×104)y(1.0×104)+yy

The equilibrium concentration of [HS] is ((1.0×104)y)M .

The equilibrium concentration of [H+] is (1.0×104)+yM .

The equilibrium concentration of [S2] is yM .

The equilibrium constant expression for the given reaction is,

Ka=[H+][S2][HS] (2)

The Ka for this reaction is 1.0×1019 .

Substitute the value of Ka , [HS] , [H+] and [S2] in equation (2).

1.0×1019=[(1.0×104)+y][y][((1.0×104)y)]

The value of y will be very small as compared to 1.0×104 . Hence, it is ignored from the term [(1.0×104)y] and from [(1.0×104)+y]

Simplify the above expression.

1.0×1019=[(1.0×104)][y][1.0×104][y]=1.0×10-19M_

Therefore, the [H+] from the second reaction is 1.0×10-19M_ .

The [S2] is 1.0×10-19M_ .

According to the ICE table formed,

The [S2] is equal to the [H+] from the second reaction, that is 1.0×10-19M_ .

The total [H+] is 1.0×10-4M_ .

The total [H+] is calculated by the formula,

Total[H+]=[H+]fromfirstreaction+[H+]fromsecondreaction

Substitute the value of the [H+] from the first and second reaction in the above expression.

Total[H+]=((1.0×104)+(1.0×1019))M=1.0×10-4M_

The required pH value is 4.0_ .

The pH of a solution is calculated by the formula,

pH=log[H+]

Substitute the value of [H+] in the above expression.

pH=log[1.0×104]=4.0_

Conclusion

Conclusion

The pH of the given solution is 4.0_ and the [S2] is 1.0×10-19M_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please correct answer and don't used hand raiting
Please correct answer and don't used hand raiting
(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!

Chapter 13 Solutions

EBK CHEMISTRY: AN ATOMS FIRST APPROACH

Ch. 13 - Prob. 1ALQCh. 13 - Differentiate between the terms strength and...Ch. 13 - Sketch two graphs: (a) percent dissociation for...Ch. 13 - Prob. 4ALQCh. 13 - Prob. 5ALQCh. 13 - Prob. 6ALQCh. 13 - Prob. 7ALQCh. 13 - Prob. 8ALQCh. 13 - Consider a solution formed by mixing 100.0 mL of...Ch. 13 - Prob. 10ALQCh. 13 - Prob. 11ALQCh. 13 - Prob. 12ALQCh. 13 - What is meant by pH? True or false: A strong acid...Ch. 13 - Prob. 14ALQCh. 13 - Prob. 15ALQCh. 13 - Prob. 16ALQCh. 13 - Prob. 17ALQCh. 13 - The salt BX, when dissolved in water, produces an...Ch. 13 - Anions containing hydrogen (for example, HCO3 and...Ch. 13 - Prob. 20QCh. 13 - Prob. 21QCh. 13 - Prob. 22QCh. 13 - Prob. 23QCh. 13 - Prob. 24QCh. 13 - Prob. 25QCh. 13 - The following are representations of acidbase...Ch. 13 - Prob. 27QCh. 13 - Prob. 28QCh. 13 - Prob. 29QCh. 13 - Prob. 30QCh. 13 - Prob. 31QCh. 13 - Prob. 32QCh. 13 - Prob. 33QCh. 13 - Prob. 34QCh. 13 - Write balanced equations that describe the...Ch. 13 - Write the dissociation reaction and the...Ch. 13 - Prob. 37ECh. 13 - For each of the following aqueous reactions,...Ch. 13 - Classify each of the following as a strong acid or...Ch. 13 - Consider the following illustrations: Which beaker...Ch. 13 - Use Table 13-2 to order the following from the...Ch. 13 - Prob. 42ECh. 13 - Prob. 43ECh. 13 - Prob. 44ECh. 13 - Prob. 45ECh. 13 - Prob. 46ECh. 13 - Values of Kw as a function of temperature are as...Ch. 13 - At 40.C the value of Kw is 2.92 1014. a....Ch. 13 - Calculate the pH and pOH of the solutions in...Ch. 13 - Calculate [H+] and [OH] for each solution at 25C....Ch. 13 - Prob. 51ECh. 13 - Fill in the missing information in the following...Ch. 13 - The pH of a sample of gastric juice in a persons...Ch. 13 - The pOH of a sample of baking soda dissolved in...Ch. 13 - What are the major species present in 0.250 M...Ch. 13 - A solution is prepared by adding 50.0 mL of 0.050...Ch. 13 - Calculate the pH of each of the following...Ch. 13 - Calculate the pH of each of the following...Ch. 13 - Calculate the concentration of an aqueous HI...Ch. 13 - Prob. 60ECh. 13 - Prob. 61ECh. 13 - A solution is prepared by adding 50.0 mL...Ch. 13 - Prob. 63ECh. 13 - Prob. 64ECh. 13 - Calculate the concentration of all species present...Ch. 13 - Calculate the percent dissociation for a 0.22-M...Ch. 13 - For propanoic acid (HC3H5O2, Ka = 1.3 105),...Ch. 13 - A solution is prepared by dissolving 0.56 g...Ch. 13 - Monochloroacetic acid, HC2H2ClO2, is a skin...Ch. 13 - A typical aspirin tablet contains 325 mg...Ch. 13 - Calculate the pH of a solution that contains 1.0 M...Ch. 13 - Prob. 72ECh. 13 - Calculate the percent dissociation of the acid in...Ch. 13 - Prob. 74ECh. 13 - A 0.15-M solution of a weak acid is 3.0%...Ch. 13 - An acid HX is 25% dissociated in water. If the...Ch. 13 - Trichloroacetic acid (CCl3CO2H) is a corrosive...Ch. 13 - The pH of a 0.063-M solution of hypobromous acid...Ch. 13 - A solution of formic acid (HCOOH, Ka = 1.8 104)...Ch. 13 - Prob. 80ECh. 13 - Prob. 81ECh. 13 - You have 100.0 g saccharin, a sugar substitute,...Ch. 13 - Write the reaction and the corresponding Kb...Ch. 13 - Write the reaction and the corresponding Kb...Ch. 13 - Prob. 85ECh. 13 - Use Table 13-3 to help order the following acids...Ch. 13 - Use Table 13-3 to help answer the following...Ch. 13 - Prob. 88ECh. 13 - Calculate the pH of the following solutions. a....Ch. 13 - Calculate [OH], pOH, and pH for each of the...Ch. 13 - Prob. 91ECh. 13 - Prob. 92ECh. 13 - What mass of KOH is necessary to prepare 800.0 mL...Ch. 13 - Calculate the concentration of an aqueous Sr(OH)2...Ch. 13 - Prob. 95ECh. 13 - For the reaction of hydrazine (N2H4) in water,...Ch. 13 - Calculate [OH], [H+], and the pH of 0.20 M...Ch. 13 - Calculate [OH], [H+], and the pH of 0.40 M...Ch. 13 - Calculate the pH of a 0.20-M C2H5NH2 solution (Kb...Ch. 13 - Prob. 100ECh. 13 - What is the percent ionization in each of the...Ch. 13 - Prob. 102ECh. 13 - The pH of a 0.016-M aqueous solution of...Ch. 13 - Calculate the mass of HONH2 required to dissolve...Ch. 13 - Prob. 105ECh. 13 - Prob. 106ECh. 13 - Prob. 107ECh. 13 - Arsenic acid (H3AsO4) is a triprotic acid with Ka1...Ch. 13 - Prob. 109ECh. 13 - Calculate [CO32] in a 0.010-M solution of CO2 in...Ch. 13 - Prob. 111ECh. 13 - Calculate the pH of a 5.0 103-M solution of...Ch. 13 - Arrange the following 0.10 M solutions in order of...Ch. 13 - Prob. 114ECh. 13 - Prob. 115ECh. 13 - The Kb values for ammonia and methylamine are 1.8 ...Ch. 13 - Determine [OH], [H+], and the pH of each of the...Ch. 13 - Calculate the concentrations of all species...Ch. 13 - Prob. 119ECh. 13 - Prob. 120ECh. 13 - Prob. 121ECh. 13 - Papaverine hydrochloride (abbreviated papH+Cl;...Ch. 13 - An unknown salt is either NaCN, NaC2H3O2, NaF,...Ch. 13 - Prob. 124ECh. 13 - A 0.050-M solution of the salt NaB has a pH of...Ch. 13 - Prob. 126ECh. 13 - Prob. 127ECh. 13 - Prob. 128ECh. 13 - Are solutions of the following salts acidic,...Ch. 13 - Prob. 130ECh. 13 - Prob. 131ECh. 13 - Prob. 132ECh. 13 - Place the species in each of the following groups...Ch. 13 - Prob. 134ECh. 13 - Will the following oxides give acidic, basic, or...Ch. 13 - Prob. 136ECh. 13 - Prob. 137ECh. 13 - Prob. 138ECh. 13 - Prob. 139ECh. 13 - Zinc hydroxide is an amphoteric substance. Write...Ch. 13 - Prob. 141ECh. 13 - Prob. 142ECh. 13 - Prob. 143AECh. 13 - Prob. 144AECh. 13 - A solution is tested for pH and conductivity as...Ch. 13 - The pH of human blood is steady at a value of...Ch. 13 - Prob. 147AECh. 13 - Prob. 148AECh. 13 - Prob. 149AECh. 13 - Prob. 150AECh. 13 - Acrylic acid (CH29CHCO2H) is a precursor for many...Ch. 13 - Prob. 152AECh. 13 - Prob. 153AECh. 13 - Prob. 154AECh. 13 - Prob. 155AECh. 13 - Prob. 156AECh. 13 - Prob. 157AECh. 13 - Prob. 158AECh. 13 - Prob. 159AECh. 13 - Prob. 160AECh. 13 - Prob. 161AECh. 13 - For solutions of the same concentration, as acid...Ch. 13 - Prob. 163CWPCh. 13 - Consider a 0.60-M solution of HC3H5O3, lactic acid...Ch. 13 - Prob. 165CWPCh. 13 - Prob. 166CWPCh. 13 - Consider 0.25 M solutions of the following salts:...Ch. 13 - Calculate the pH of the following solutions: a....Ch. 13 - Prob. 169CWPCh. 13 - Prob. 170CPCh. 13 - Prob. 171CPCh. 13 - Prob. 172CPCh. 13 - Prob. 173CPCh. 13 - Prob. 174CPCh. 13 - Calculate the pH of a 0.200-M solution of C5H5NHF....Ch. 13 - Determine the pH of a 0.50-M solution of NH4OCl....Ch. 13 - Prob. 177CPCh. 13 - Prob. 178CPCh. 13 - Consider 1000. mL of a 1.00 104-M solution of a...Ch. 13 - Calculate the mass of sodium hydroxide that must...Ch. 13 - Prob. 181CPCh. 13 - Prob. 182CPCh. 13 - Will 0.10 M solutions of the following salts be...Ch. 13 - Prob. 184CPCh. 13 - A 0.100-g sample of the weak acid HA (molar mass =...Ch. 13 - Prob. 186CPCh. 13 - A 2.14 g sample of sodium hypoiodite is dissolved...Ch. 13 - Isocyanic acid (HNCO) can be prepared by heating...Ch. 13 - Prob. 189IPCh. 13 - An aqueous solution contains a mixture of 0.0500 M...Ch. 13 - Prob. 191MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY