Fundamentals of Electric Circuits
6th Edition
ISBN: 9780078028229
Author: Charles K Alexander, Matthew Sadiku
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.7, Problem 6PP
For the Y-Y circuit in Practice Prob. 12.2, calculate the complex power at the source and at the load.
A Y-connected balanced three-phase generator with an impedance of 0.4 + j0.3 Ω per phase is connected to a Y-connected balanced load with an impedance of 24 + j19 Ω per phase. The line joining the generator and the load has an impedance of 0.6 + j0.7 Ω per phase. Assuming a positive sequence for the source voltages and that find: (a) the line voltages, (b) the line currents.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate "terminal" phase voltage of phases "a" and "c" of generator.
Calculate Vab and Vca across the load.
Calculate three phase power supplied by the source.
]Calculate three phase power losses.
Two delta connected loads are connected in parallel and powered by a balanced Y-connectedsource. The smaller of two loads draws 10 kVA at a lagging power factor of 0.75 and the largerdraws 25 kVA at a leading power factor of 0.8. The line voltage is 400 V. Calculate a) The powerfactor at which the source is operating. b) The total power drawn by the two loads. c) The phasecurrent of each load.
AY-connected balanced three-phase source is connected to a three-phase balanced load
through a four-wire three-phase cable. The generator has an impedance
of 0.1+jo.3 2/phase. Each phase of the cable has an impedance of 2+2j N. The phase "B"
load voltage is 102-140• kV. The impedance of each phase of the Y-connected load is 3-j5
0/phase. For a positive sequence:
Calculate "internal" phase voltage of phase (a) of generator (emf)
1-
2-
Calculate Vab across the load
3-
Calculate three phase power supplied by the source
Chapter 12 Solutions
Fundamentals of Electric Circuits
Ch. 12.2 - Given that Vbn=22030V, find Van and Vcn, assuming...Ch. 12.3 - A Y-connected balanced three-phase generator with...Ch. 12.4 - One line voltage of a balanced Y-connected source...Ch. 12.5 - A positive-sequence, balanced -connected source...Ch. 12.6 - In a balanced -Y circuit, Vab=44015 and ZY = (12 +...Ch. 12.7 - For the Y-Y circuit in Practice Prob. 12.2,...Ch. 12.7 - Calculate the line current required for a 30-kW...Ch. 12.7 - Assume that the two balanced loads in Fig....Ch. 12.8 - The unbalanced -load of Fig. 12.24 is supplied by...Ch. 12.8 - Find the line currents in the unbalanced...
Ch. 12.9 - Prob. 11PPCh. 12.9 - For the unbalanced circuit in Fig. 12.32, use...Ch. 12.10 - Repeat Example 12.13 for the network in Fig. 12.24...Ch. 12.10 - Let the line voltage VL = 208 V and the wattmeter...Ch. 12.10 - If the load in Fig. 12.35 is delta-connected with...Ch. 12 - What is the phase sequence of a three-phase motor...Ch. 12 - If in an acb phase sequence, , then Vcn is:Ch. 12 - Which of these is not a required condition for a...Ch. 12 - Prob. 4RQCh. 12 - Prob. 5RQCh. 12 - In a Y-Y system, a line voltage of 220 V produces...Ch. 12 - In a - system, a phase voltage of 100 V produces a...Ch. 12 - When a Y-connected load is supplied by voltages in...Ch. 12 - Prob. 9RQCh. 12 - Prob. 10RQCh. 12 - If Vab = 400 V in a balanced Y-connected...Ch. 12 - What is the phase sequence of a balanced...Ch. 12 - Given a balanced Y-connected three-phase generator...Ch. 12 - A three-phase system with abc sequence and VL =...Ch. 12 - For a Y-connected load, the time-domain...Ch. 12 - Using Fig. 12.41, design a problem to help other...Ch. 12 - Obtain the line currents in the three-phase...Ch. 12 - In a balanced three-phase Y-Y system, the source...Ch. 12 - A balanced Y-Y four-wire system has phase voltages...Ch. 12 - For the circuit in Fig. 12.43, determine the...Ch. 12 - In the Y- system shown in Fig. 12.44, the source...Ch. 12 - Using Fig. 12.45, design a problem to help other...Ch. 12 - In the balanced three-phase Y- system in Fig....Ch. 12 - Obtain the line currents in the three-phase...Ch. 12 - The circuit in Fig. 12.48 is excited by a balanced...Ch. 12 - A balanced delta-connected load has a phase...Ch. 12 - A positive sequence wye-connected source where ,...Ch. 12 - If Van = 22060 V in the network of Fig. 12.49,...Ch. 12 - For the - circuit of Fig. 12.50, calculate the...Ch. 12 - Prob. 20PCh. 12 - Three 440-V generators form a delta-connected...Ch. 12 - Find the line currents IaA, IbB, and IcC in the...Ch. 12 - A balanced delta connected source is connected to...Ch. 12 - A balanced delta-connected source has phase...Ch. 12 - In the circuit of Fig. 12.54, if , , , find the...Ch. 12 - Using Fig. 12.55, design a problem to help other...Ch. 12 - A -connected source supplies power to a...Ch. 12 - The line-to-line voltages in a Y-load have a...Ch. 12 - A balanced three-phase Y- system has V rms and Z =...Ch. 12 - In Fig. 12.56, the rms value of the line voltage...Ch. 12 - A balanced delta-connected load is supplied by a...Ch. 12 - Design a problem to help other students better...Ch. 12 - A three-phase source delivers 4.8 kVA to a...Ch. 12 - A balanced wye-connected load with a phase...Ch. 12 - Three equal impedances, 60 + j30 each, are...Ch. 12 - A 4200-V, three-phase transmission line has an...Ch. 12 - The total power measured in a three-phase system...Ch. 12 - Given the circuit in Fig. 12.57 below, find the...Ch. 12 - Find the real power absorbed by the load in Fig....Ch. 12 - For the three-phase circuit in Fig. 12.59, find...Ch. 12 - A balanced delta-connected load draws 5 kW at a...Ch. 12 - A balanced three-phase generator delivers 7.2 kW...Ch. 12 - Refer to Fig. 12.48. Obtain the complex power...Ch. 12 - A three-phase line has an impedance of 1 + j3 per...Ch. 12 - A balanced wye-connected load is connected to the...Ch. 12 - A three-phase load consists of three 100-...Ch. 12 - The following three parallel-connected three-phase...Ch. 12 - A balanced, positive-sequence wye-connected source...Ch. 12 - Each phase load consists of a 20- resistor and a...Ch. 12 - A balanced three-phase source with VL = 240 V rms...Ch. 12 - Consider the wye-delta system shown in Fig. 12.60....Ch. 12 - A four-wire wye-wye circuit has...Ch. 12 - Using Fig. 12.61, design a problem that will help...Ch. 12 - A balanced three-phase Y-source with VP = 880 V...Ch. 12 - A three-phase supply, with the line-to-line...Ch. 12 - Using Fig. 12.63, design a problem to help other...Ch. 12 - Determine the line currents for the three-phase...Ch. 12 - Solve Prob. 12.10 using PSpice or MultiSim. For...Ch. 12 - The source in Fig. 12.65 is balanced and exhibits...Ch. 12 - Use PSpice or MultiSim to determine Io in the...Ch. 12 - Given the circuit in Fig. 12.67, use PSpice or...Ch. 12 - Using Fig. 12.68, design a problem to help other...Ch. 12 - Use PSpice or MultiSim to find currents IaA and...Ch. 12 - For the circuit in Fig. 12.58, use PSpice or...Ch. 12 - A balanced three-phase circuit is shown in Fig....Ch. 12 - A three-phase, four-wire system operating with a...Ch. 12 - As shown in Fig. 12.72, a three-phase four-wire...Ch. 12 - Meter readings for a three-phase wye-connected...Ch. 12 - A certain store contains three balanced...Ch. 12 - The two-wattmeter method gives P1=1200W and...Ch. 12 - In Fig. 12.73, two wattmeters are properly...Ch. 12 - If wattmeters W1 and W2 are properly connected...Ch. 12 - For the circuit displayed in Fig. 12.74, find the...Ch. 12 - Predict the wattmeter readings for the circuit in...Ch. 12 - Prob. 75PCh. 12 - Show that the I2R losses will be higher for a...Ch. 12 - A three-phase generator supplied 10 kVA at a power...Ch. 12 - Prob. 78CPCh. 12 - A balanced three-phase generator has an abc phase...Ch. 12 - A balanced three-phase source furnishes power to...Ch. 12 - A professional center is supplied by a balanced...Ch. 12 - A balanced three-phase system has a distribution...Ch. 12 - A commercially available three-phase inductive...Ch. 12 - Figure 12.76 displays a three-phase...Ch. 12 - Design a three-phase heater with suitable...Ch. 12 - For the single-phase three-wire system in Fig....Ch. 12 - Consider the single-phase three-wire system shown...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
1.2 Explain the difference between geodetic and plane
surveys,
Elementary Surveying: An Introduction To Geomatics (15th Edition)
This optional Google account security feature sends you a message with a code that you must enter, in addition ...
SURVEY OF OPERATING SYSTEMS
Write a summary list of the problem-solving steps identified in the chapter, using your own words.
BASIC BIOMECHANICS
Why is the study of database technology important?
Database Concepts (8th Edition)
Assume a telephone signal travels through a cable at two-thirds the speed of light. How long does it take the s...
Electric Circuits. (11th Edition)
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- How do you solve this? Aren't you supposed to divide all impedances by three? Also, how do I know if I'm supposed to convert to wye or not?arrow_forwardA Y-connected balanced three-phase source is connected to a three-phase balanced load through a four-wire three-phase cable. The generator has an impedance of 0.1+j0.3 Q/phase. Each phase of the cable has an impedance of 2+2j 2 The phase "B" load voltage is 102-140° kV. The impedance of each phase of the Y-connected load is 3-j5 Q/phase. For a negative sequence: 1- tto pointe) Calculate "terminal" phase voltage of phases "a" and "c" of generator. 2- E points] Calculate Vab and Vca across the load. 5 points Calculate three phase power supplied by the source. 4- 10 point] Calculate three phase power losses.arrow_forward1. The following are the given for the circuit below: VRY = 220 cis 0°, VYB = 220 cis -120° and VBR = 220 cis -240°. IR = 10 cis 0°. The load is balanced and delta connected. Determine the: (a) Impedance per phase (b) Current per phase (c) Line currents. B R reellle relllle momm Y RY Iy IB ĪR B R ZBR VYB ZRYarrow_forward
- Circuit theory I just want the final answer, I don't need the solution steps. I want the solution in less than 30 minutes, please The question is : Q.1) A Y-connected balanced three-phase generator with an impedance of Zs =0.4+j0.3 ohm per phase is connected to a Y-connected balanced load with an impedance of ZL=19+j48 ohm per phase. The line joining the generator and the load has an impedance of Zl=0.6+j0.7 ohm per phase. Assuming a positive sequence for the source voltages and that amplitude of |Van|=204 and its phase angle 30 degree Find: (a) amplitude of the line voltage Vbc, (b) amplitude of the line current Ic, (c) the complex power at the balanced three-phase load. a. (a) Vb=353.34 V, (b) Ic=3.85 A, (c) S = 89641.40 + j 1110.11 VA b. (a) Vb=288.50 V, (b) Ic=2.23 A, (c) S = 14940.23 + j 320.46 VA c. (a) Vb=353.34 V, (b) Ic=3.85 A, (c) S = 846.88 + j 2139.49 VA d. (a) Vb=353.34 V, (b) Ic=5.78 A, (c) S = 44820.70 + j 832.58 VA e. (a) Vb=353.34 V, (b)…arrow_forwardCan you solve the question with clearly writing ? Please try to solve true because I have 2 solution both are different I wait from you true answer.arrow_forwardThree loads are connected in parallel across a 12.47 kV, 60Hz three-phase supply. Load 1: Inductive load, 60 kW at 0.75 power factor. Load 2: Capacitive load, 300 kW at 0.8 power factor. Load 3: Resistive load of 60 kW. a) Find the total complex power, power factor, and the supply current. b) A Y-connected capacitor bank is connected in parallel with the loads. Find the total kvar and the capacitance per phase to improve the overall power factor to 0.95 lagging. c) What is the new line current for the 0.95 lagging pf condition?arrow_forward
- electrical eng help pls can you solve i and ii if possiblearrow_forward2. Three-Phase SystemThree loads are connected in parallel to a 12.47 kV, 60 Hz three-phase supply.Load 1: Inductive load, 60 kW and 660 KVARLoad 2: Capacitive load, 240 kW at 0.8 . power factorLoad 3: Resistive load 60 kWDefine:a. Active power, reactive power and total apparent power?b. Total power factor ?c. What is the total supply current?A Y-connected capacitor bank, connected in parallel withload, to improve the overall power factor to 0.95 lagging.Define:d. Total capacitor capacity (KVAR)?e. Capacitance of a phased capacitor (UF)?f. How big is the line current after the capacitor bank is installed?arrow_forwardA balanced three-phase Y-connected source with positive sequance has an internal voltage of 120 V/phase. The source feeds a balanced three-phase Y-connected load having an impedance of 39 + j28 N /phase. The impedance of the transmission line connecting the source to the load is 1+ j20/phase. The a- phase of the source is the reference voltage. a) Draw the equivalent per-phase-circuit for the phase "a". b) Calculate the three line currents in the transmission lines. c) Calculate the three phase voltages at load. d) Calculate the three line-to-line voltages at the terminals of the load. e) Calculate the total average power in watts delivered to the load. f) Calculate the total complex power in VA delivered by the source.arrow_forward
- Solve the question from point 4 to point 11arrow_forwardA 208-V three-phase power system is shown in Figure A-13. It consists of an ideal 208-V Y-connected three-phase generator connected through a three- phase transmission line to a Y-connected load. The transmission line has an impedance of 0.06 + j0.120 per phase, and the load has an impedance of 12 + j9 N per phase. For this simple power system, find The magnitude of the line current I 0.06 N j0.12 N 0.06 N j0.12 n V- 1202-240° Van Z, = 12 + 9 N 12020 208 V Van - 1202-120°( 0.06 N j0.12 narrow_forwardIn a three-phase loading system non identical load impedances refers to Select one: O a. Ideal load O b. Zero load O C. Un Balanced Load d. Balanced Loadarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
What is the Difference Between Single Phase and Three Phase???; Author: Electrician U;https://www.youtube.com/watch?v=FEydcr4wJw0;License: Standard Youtube License