Concept explainers
A certain store contains three balanced three-phase loads. The three loads are:
Load 1: 16kVA at 0.85 pf lagging
Load 2: 12 kVA at 0.6 pf lagging
Load 3: 8 kW at unity pf
The line voltage at the load is 208 V rms at 60 Hz, and the line impedance is
Find the line currents and the complex power delivered to the loads.
Answer to Problem 69P
The line currents
The complex power delivered to the loads is
Explanation of Solution
Given data:
The given three balanced three-phase loads are,
The reactive power of the Load 1 is
The reactive power of the Load 2 is 12 kVA and the power factor is 0.6 (lagging).
The real power of the Load 3 is
The line voltage at the load is
The line impedance is
Formula used:
Write the expression to find the complex power
Here,
Write the expression to find the average power
Here,
Write the expression to find the reactive power
Write the expression to find the complex power of the Load 2.
Here,
Write the expression to find the real power of the Load 2.
Here,
Write the expression to find the reactive power of the Load 2.
Write the expression to find the complex power of the Load 3.
Here,
Write the expression to find the real power of the Load 3.
Here,
Write the expression to find the reactive power of the Load 3.
Write the expression to find the total complex power.
Here,
Write the expression to find the phase voltage.
Here,
Write the expression to find the line to neutral voltage
Here,
Write the expression to find the complex power
Here,
Write the expression to find the line current
Here,
Write the expression to find the line current
Calculation:
The given lagging power factor of the Load 1 is,
Rewrite the above equation to find the angle
Substitute
Substitute
Substitute
The given lagging power factor of the Load 2 is,
Rearrange the above equation to find the angle
Substitute
Substitute
Substitute
The given unity power factor of the Load 3 is,
Rewrite the above equation to find the angle
Substitute
Rewrite the above equation to find
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Re-write the above equation to find the current
The complex current
The line current
Substitute
Substitute
Conclusion:
Thus,
The line currents
The complex power delivered to the loads is
Want to see more full solutions like this?
Chapter 12 Solutions
Fundamentals of Electric Circuits
- Please solve in detailarrow_forward6.7 The transmitting aerial shown in Fig. Q.3 is supplied with current at 80 A peak and at frequency 666.66 kHz. Calculate (a) the effective height of the aerial, and (b) the electric field strength produced at ground level 40 km away. 60 m Fig. Q.3 Input 48 m Eartharrow_forwardox SIM 12.11 Consider the class B output stage, using MOSFETs, shown in Fig. P12.11. Let the devices have |V|= 0.5 V and μC WIL = 2 mA/V². With a 10-kHz sine-wave input of 5-V peak and a high value of load resistance, what peak output would you expect? What fraction of the sine-wave period does the crossover interval represent? For what value of load resistor is the peak output voltage reduced to half the input? Figure P12.11 +5 V Q1 Q2 -5Varrow_forward
- 4 H ་་་་་་་ 四一周 A H₂ Find out put c I writ R as a function G, H, Harrow_forward4 H A H₂ 四一周 Find out put c I writ R as a function G, H, Harrow_forward8. (a) In a Round-Robin tournament, the Tigers beat the Blue Jays, the Tigers beat the Cardinals, the Tigers beat the Orioles, the Blue Jays beat the Cardinals, the Blue Jays beat the Orioles and the Cardinals beat the Orioles. Model this outcome with a directed graph. https://www.akubihar.com (b) (c) ✓ - Let G = (V, E) be a simple graph. Let R be the relation on V consisting of pairs of vertices (u, v) such that there is a path from u to vor such that u= v. Show that R is an equivalence relation. 3 3 Determine whether the following given pair of directed graphs, shown in Fig. 1 and Fig. 2, are isomorphic or not. Exhibit an isomorphism or provide a rigorous argument that none exists. 4+4=8 Աշ աշ ИНИЯ Fig. 1 Fig. 2 Querarrow_forward
- EXAMPLE 4.5 Objective: Determine ID, circuit. V SG' SD Vs and the small - signal voltage gain of a PMOS transistor Consider the circuit shown in Figure 4.20(a). The transistor parameters are A K = 0.80m- V Р _2’TP = 0.5V, and λ = 0 Varrow_forwardNeed a solution and don't use chatgptarrow_forwardNeed a solarrow_forward
- Do not use chaarrow_forwardIn the following table, the value of 40 resistors are recorded in ohms. (a) Construct the frequency distribution table using number of class=5. (b) Plot the histogram of frequency table. 45 50 61 32 25 50 64 28 40 40 46 47 48 35 58 35 54 38 68 76 19 63 26 65 54 42 68 47 53 36 73 44 49 35 38 42 56 44 45 57arrow_forwardcircuit source transformation step by step v0 findarrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning