Concept explainers
A professional center is supplied by a balanced three-phase source. The center has four balance three-phase loads as follows:
Load 1: 150 kVA at 0.8 pf leading
Load 2: 100 kW at unity pf
Load 3: 200 kVA at 0.6 pf lagging
Load 4: 80 kW and 95 kVAR (inductive)
If the line impedance is 0.02 + j0.05 Ω per phase and the line voltage at the loads is 480 V, find the magnitude of the line voltage at the source.
Find the magnitude of the line voltage at the source.
Answer to Problem 81CP
The magnitude of the line voltage at the source is
Explanation of Solution
Given data:
A balanced three-phase source connected to four balanced three-phase loads, Those are,
Load 1:
The apparent power of the Load 1
The power factor of the Load 1 is
Load 2:
The real power of the Load 2
The power factor of the Load 2 is unity.
Load 3:
The apparent power of the Load 3
The power factor of the Load 3 is 0.6 (lagging).
Load 4:
The reactive power of the Load 4
The real power of the Load 4
The line impedance
The line voltage at the loads
Formula used:
Write the expression to find the complex power of the Load 1.
Here,
Write the expression to find the real power of the Load 1.
Here,
Write the expression to find the reactive power of the Load 1.
Here,
Write the expression to find the complex power of the Load 2.
Here,
Write the expression to find the real power
Here,
Rearrange the equation (5) to find the apparent power
Write the expression to find the reactive power
Here,
Write the expression to find the complex power of the Load 3.
Here,
Write the expression to find the real power of the Load 3.
Here,
Write the expression to find the reactive power of the Load 3.
Here,
Write the expression to find the complex power of the Load 4.
Here,
Write the expression to find the total complex power
Here,
Write the expression to find the apparent power (S).
Here,
Write the expression to find the complex power absorbed by the line.
Here,
Write the expression to find the total complex power at the source.
Here,
Write the expression for the apparent power
Here
Calculation:
Load 1:
The given leading power factor of the Load 1 is ,
Re-write the equation to find the angle
Substitute
Substitute
Substitute
Load 2:
Substitute
The given unity power factor of the Load 2,
Rewrite the equation to find the angle
Substitute
Substitute
Load 3:
The given lagging power factor of the Load 3 is,
Rewrite the equation to find the angle
Substitute
Substitute
Substitute
Load 4:
Substitute
Substitute
Here, the apparent power is
Substitute
Re-write the above equation to find the line current
Substitute
Substitute
Re-write the above value as below,
Substitute
Rewrite the above equation to find
Conclusion:
Thus, the magnitude of the line voltage at the source is
Want to see more full solutions like this?
Chapter 12 Solutions
Fundamentals of Electric Circuits
- Solve in detail to understandarrow_forwardPlease solve in detailarrow_forward6.7 The transmitting aerial shown in Fig. Q.3 is supplied with current at 80 A peak and at frequency 666.66 kHz. Calculate (a) the effective height of the aerial, and (b) the electric field strength produced at ground level 40 km away. 60 m Fig. Q.3 Input 48 m Eartharrow_forward
- ox SIM 12.11 Consider the class B output stage, using MOSFETs, shown in Fig. P12.11. Let the devices have |V|= 0.5 V and μC WIL = 2 mA/V². With a 10-kHz sine-wave input of 5-V peak and a high value of load resistance, what peak output would you expect? What fraction of the sine-wave period does the crossover interval represent? For what value of load resistor is the peak output voltage reduced to half the input? Figure P12.11 +5 V Q1 Q2 -5Varrow_forward4 H ་་་་་་་ 四一周 A H₂ Find out put c I writ R as a function G, H, Harrow_forward4 H A H₂ 四一周 Find out put c I writ R as a function G, H, Harrow_forward
- 8. (a) In a Round-Robin tournament, the Tigers beat the Blue Jays, the Tigers beat the Cardinals, the Tigers beat the Orioles, the Blue Jays beat the Cardinals, the Blue Jays beat the Orioles and the Cardinals beat the Orioles. Model this outcome with a directed graph. https://www.akubihar.com (b) (c) ✓ - Let G = (V, E) be a simple graph. Let R be the relation on V consisting of pairs of vertices (u, v) such that there is a path from u to vor such that u= v. Show that R is an equivalence relation. 3 3 Determine whether the following given pair of directed graphs, shown in Fig. 1 and Fig. 2, are isomorphic or not. Exhibit an isomorphism or provide a rigorous argument that none exists. 4+4=8 Աշ աշ ИНИЯ Fig. 1 Fig. 2 Querarrow_forwardEXAMPLE 4.5 Objective: Determine ID, circuit. V SG' SD Vs and the small - signal voltage gain of a PMOS transistor Consider the circuit shown in Figure 4.20(a). The transistor parameters are A K = 0.80m- V Р _2’TP = 0.5V, and λ = 0 Varrow_forwardNeed a solution and don't use chatgptarrow_forward
- Need a solarrow_forwardDo not use chaarrow_forwardIn the following table, the value of 40 resistors are recorded in ohms. (a) Construct the frequency distribution table using number of class=5. (b) Plot the histogram of frequency table. 45 50 61 32 25 50 64 28 40 40 46 47 48 35 58 35 54 38 68 76 19 63 26 65 54 42 68 47 53 36 73 44 49 35 38 42 56 44 45 57arrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning