Chemistry: The Molecular Science
Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 12, Problem 96QRT
Interpretation Introduction

Interpretation:

From the equilibrium reaction of COandH2O with CO2andH2, the cases at which the concentration of CO increases and the concentration of CO decreases has to be given.

Concept Introduction:

Equilibrium constant(Kc):

Equilibrium constant (Kc) is the ratio of the rate constants of the forward and reverse reactions at a given temperature.  In other words it is the ratio of the concentrations of the products to concentrations of the reactants.  Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction.

Consider the reaction where A reacts to give B.

  aAbB

  Rate of forward reaction = Rate of reverse reactionkf[A]a=kr[B]b

On rearranging,

    [B]b[A]a=kfkr=Kc

Where,

    kf is the rate constant of the forward reaction.

    kr is the rate constant of the reverse reaction.

    Kc is the equilibrium constant.

Reaction Quotient:

Reaction quotient, Q is the ratio between product of the product concentration to the product of the reactant concentration with each term raised to the power of its balancing coefficient.

Consider a general equation,

  aA +bAcC+dD

Where a, b, c and d are the stoichiometric coefficients.  The reaction quotient is,

  Qc = [C]c[D]d[A]a[B]b

The concentration of solids and pure liquids do not change, so their concentration terms are not included in the reaction quotient expression.

Comparison of Qc and Kc:

When Qc < Kc, the reaction will proceed in right direction, reactantsproducts.

When Qc > Kc, the reaction will proceed in left direction, reactantsproducts.

When Qc = Kc, the reaction will remain unchanged, reactantsproducts.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given information,

  Volume of flask is 10.00L.

  Equilibrium constant value for the reaction,

  CO(g)+H2O(g)CO2(g)+H2(g)KC=4.00

  nCO(mol)nH2O(mol)nCO2(mol)nCO2(mol)_Casea1.00.100.100.10Caseb101.01.01.0Casec10101.01.0Cased5.620.3811.751.75

Case a:

Calculate the QC value for the given reaction,

  QC=[CO2][H2][CO][HI]=(0.10molCO210.00L)(0.10molH210.00L)(1.0molCO10.00L)(0.10molH2O10.00L)=0.10

Compare QC value with KC value,

  QC<KC

Therefore, in case a, the concentration of CO decreases.

Case b:

Calculate the QC value for the given reaction,

  QC=[CO2][H2][CO][HI]=(1.0molCO210.00L)(1.0molH210.00L)(10molCO10.00L)(1.0molH2O10.00L)=0.10

Compare QC value with KC value,

  QC<KC

Therefore, in case b, the concentration of CO decreases.

Case c:

Calculate the QC value for the given reaction,

  QC=[CO2][H2][CO][HI]=(1.0molCO210.00L)(1.0molH210.00L)(10molCO10.00L)(10molH2O10.00L)=0.010

Compare QC value with KC value,

  QC<KC

Therefore, in case c, the concentration of CO decreases.

Case d:

Calculate the QC value for the given reaction,

  QC=[CO2][H2][CO][HI]=(1.75molCO210.00L)(1.75molH210.00L)(5.62molCO10.00L)(0.381molH2O10.00L)=1.43

Compare QC value with KC value,

  QC<KC

Therefore, in case d, the concentration of CO decreases.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please correct answer and don't used hand raiting
Please correct answer and don't used hand raiting
Please correct answer and don't used hand raiting

Chapter 12 Solutions

Chemistry: The Molecular Science

Ch. 12.5 - For the equilibrium 2 SO2(g) + O2(g) 2 SO3(g) Kc...Ch. 12.5 - Prob. 12.7CECh. 12.5 - Prob. 12.6PSPCh. 12.5 - Prob. 12.7PSPCh. 12.6 - Prob. 12.8CECh. 12.6 - Prob. 12.9ECh. 12.6 - Prob. 12.10CECh. 12.6 - Prob. 12.8PSPCh. 12.7 - For the ammonia synthesis reaction ⇌ Does the...Ch. 12.8 - Prob. 12.13CECh. 12 - Prob. 1QRTCh. 12 - Prob. 2QRTCh. 12 - Prob. 3QRTCh. 12 - Decomposition of ammonium dichromate is shown in...Ch. 12 - For the equilibrium reaction in Question 4, write...Ch. 12 - Indicate whether each statement below is true or...Ch. 12 - Prob. 7QRTCh. 12 - Prob. 8QRTCh. 12 - Prob. 9QRTCh. 12 - Prob. 10QRTCh. 12 - The atmosphere consists of about 80% N2 and 20%...Ch. 12 - Prob. 12QRTCh. 12 - Prob. 13QRTCh. 12 - Prob. 14QRTCh. 12 - Prob. 15QRTCh. 12 - Prob. 16QRTCh. 12 - Prob. 17QRTCh. 12 - Prob. 18QRTCh. 12 - Prob. 19QRTCh. 12 - Prob. 20QRTCh. 12 - Prob. 21QRTCh. 12 - Prob. 22QRTCh. 12 - Prob. 23QRTCh. 12 - Prob. 24QRTCh. 12 - Prob. 25QRTCh. 12 - Prob. 26QRTCh. 12 - Prob. 27QRTCh. 12 - Prob. 28QRTCh. 12 - Prob. 29QRTCh. 12 - Prob. 30QRTCh. 12 - Given these data at a certain temperature,...Ch. 12 - The vapor pressure of water at 80. C is 0.467 atm....Ch. 12 - Prob. 33QRTCh. 12 - Prob. 34QRTCh. 12 - Prob. 35QRTCh. 12 - Prob. 36QRTCh. 12 - Carbon dioxide reacts with carbon to give carbon...Ch. 12 - Prob. 38QRTCh. 12 - Prob. 39QRTCh. 12 - Prob. 40QRTCh. 12 - Nitrosyl chloride, NOC1, decomposes to NO and Cl2...Ch. 12 - Suppose 0.086 mol Br2 is placed in a 1.26-L flask....Ch. 12 - Prob. 43QRTCh. 12 - Prob. 44QRTCh. 12 - Prob. 45QRTCh. 12 - Using the data of Table 12.1, predict which of...Ch. 12 - Prob. 47QRTCh. 12 - The equilibrium constants for dissolving silver...Ch. 12 - Prob. 49QRTCh. 12 - Prob. 50QRTCh. 12 - At room temperature, the equilibrium constant Kc...Ch. 12 - Prob. 52QRTCh. 12 - Consider the equilibrium N2(g)+O2(g)2NO(g) At 2300...Ch. 12 - The equilibrium constant, Kc, for the reaction...Ch. 12 - Prob. 55QRTCh. 12 - Prob. 56QRTCh. 12 - Prob. 57QRTCh. 12 - At 503 K the equilibrium constant Kc for the...Ch. 12 - Prob. 59QRTCh. 12 - Prob. 60QRTCh. 12 - Prob. 61QRTCh. 12 - Prob. 62QRTCh. 12 - Prob. 63QRTCh. 12 - Prob. 64QRTCh. 12 - Prob. 65QRTCh. 12 - Prob. 66QRTCh. 12 - Prob. 67QRTCh. 12 - Hydrogen, bromine, and HBr in the gas phase are in...Ch. 12 - Prob. 69QRTCh. 12 - Prob. 70QRTCh. 12 - Prob. 71QRTCh. 12 - Prob. 72QRTCh. 12 - Prob. 73QRTCh. 12 - Prob. 74QRTCh. 12 - Consider the system 4 NH3(g) + 3 O2(g) ⇌ 2 N2(g) +...Ch. 12 - Prob. 76QRTCh. 12 - Predict whether the equilibrium for the...Ch. 12 - Prob. 78QRTCh. 12 - Prob. 79QRTCh. 12 - Prob. 80QRTCh. 12 - Prob. 81QRTCh. 12 - Prob. 82QRTCh. 12 - Prob. 83QRTCh. 12 - Prob. 84QRTCh. 12 - Prob. 85QRTCh. 12 - Prob. 86QRTCh. 12 - Prob. 87QRTCh. 12 - Consider the decomposition of ammonium hydrogen...Ch. 12 - Prob. 89QRTCh. 12 - Prob. 90QRTCh. 12 - Prob. 91QRTCh. 12 - Prob. 92QRTCh. 12 - Prob. 93QRTCh. 12 - Prob. 94QRTCh. 12 - Prob. 95QRTCh. 12 - Prob. 96QRTCh. 12 - Prob. 97QRTCh. 12 - Prob. 98QRTCh. 12 - Prob. 99QRTCh. 12 - Prob. 100QRTCh. 12 - Two molecules of A react to form one molecule of...Ch. 12 - Prob. 102QRTCh. 12 - In Table 12.1 (←Sec. 12-3a) the equilibrium...Ch. 12 - Prob. 104QRTCh. 12 - Prob. 105QRTCh. 12 - Prob. 106QRTCh. 12 - Prob. 107QRTCh. 12 - Which of the diagrams for Questions 107 and 108...Ch. 12 - Draw a nanoscale (particulate) level diagram for...Ch. 12 - The diagram represents an equilibrium mixture for...Ch. 12 - The equilibrium constant, Kc, is 1.05 at 350 K for...Ch. 12 - For the reaction in Question 111, which diagram...Ch. 12 - Prob. 113QRTCh. 12 - Prob. 114QRTCh. 12 - Prob. 115QRTCh. 12 - For the equilibrium...Ch. 12 - Prob. 117QRTCh. 12 - Prob. 119QRTCh. 12 - Prob. 120QRTCh. 12 - When a mixture of hydrogen and bromine is...Ch. 12 - Prob. 122QRTCh. 12 - Prob. 123QRTCh. 12 - Prob. 124QRTCh. 12 - Prob. 125QRTCh. 12 - Prob. 12.ACPCh. 12 - Prob. 12.BCPCh. 12 - Prob. 12.CCPCh. 12 - Prob. 12.DCPCh. 12 - Prob. 12.ECPCh. 12 - Prob. 12.FCP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY