
(a)
Interpretation:
The equilibrium constant expressions in terms of the unknown variable x for each given reactions has to be written by using the reaction table (ICE table) approach.
Concept Introduction:
Equilibrium constant
Equilibrium constant
Consider the reaction where A reacts to give B.
On rearranging,
Where,
(a)

Explanation of Solution
The equilibrium constant expressions in terms of the unknown variable x for 1 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for 1 reaction is,
The equilibrium constant expressions in terms of the unknown variable x for 2 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for 2 reaction is,
The equilibrium constant expressions in terms of the unknown variable x for 3 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for given reaction is,
The equilibrium constant expressions in terms of the unknown variable x for 4 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for given reaction is,
(b)
Interpretation:
The equilibrium constant expressions in terms of the unknown variable x for each given reactions has to be written, which of these expressions yield quadratic equations has to be given.
Concept Introduction:
Refer part (a).
(b)

Explanation of Solution
The given reactions and it’s the equilibrium constant expressions in terms of the unknown variable x are,
From the equilibrium constant expression, it does not yield quadratic equation.
From the equilibrium constant expression, it yields quadratic equation.
From the equilibrium constant expression, it yields quadratic equation.
From the equilibrium constant expression, it yields quadratic equation.
(c)
Interpretation:
The equilibrium constant expression in terms of the unknown variable x for given reaction has to be written and solving of x has to be explained.
Concept Introduction:
Refer to part (a).
(c)

Explanation of Solution
The equilibrium constant expressions in terms of the unknown variable x for 1 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for 1 reaction is,
The above expression is not a quadratic equation so it is solved as shown below,
The changes in stoichiometry of limiting reactant, the reaction is left favors so the x is calculated as fallows,
The valve of x is calculated as,
The calculated vale is,
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry: The Molecular Science
- A sample of hydrated magnesium sulfate (MgSO4⋅xH2O) is analyzed using thermogravimetric analysis (TGA). The sample weighs 2.50 g initially and is heated in a controlled atmosphere. As the temperature increases, the water of hydration is released in two stages: (a) The first mass loss of 0.72 g occurs at 150°C, corresponding to the loss of a certain number of water molecules. (b) The second mass loss of 0.90 g occurs at 250°C, corresponding to the loss of the remaining water molecules. The residue is identified as anhydrous magnesium sulfate (MgSO4) Questions: (i) Determine the value of x (the total number of water molecules in MgSO4⋅xH2O) (ii) Calculate the percentage of water in the original sample. Write down the applications of TGA.arrow_forwardThe solubility product of iron(III) hydroxide (Fe(OH)3) is 6.3×10−38. If 50 mL of a 0.001 M FeCl3 solution is mixed with 50 mL of a 0.005 M NaOH solution, will Fe(OH)3 precipitate? Show all step-by-step calculations. To evaluate the equilibrium constant, we must express concentrations of solutes in mol/L, gases in bars, and omit solids, liquids, and solvents. Explain why.arrow_forwardPredict the major products of this organic reaction.arrow_forward
- 2. Provide the structure of the major organic product in the following reaction. Pay particular attention to the regio- and stereochemistry of your product. H3CO + H CN Aarrow_forwardPredict the major products of the following organic reaction.arrow_forward1) The isoamyl acetate report requires eight paragraphs - four for comparison of isoamyl alcohol and isoamyl acetate (one paragraph each devoted to MS, HNMR, CNMR and IR) and four for comparison of acetic acid and isoamyl acetate ((one paragraph each devoted to MS, HNMR, CNMR and IR. 2) For MS, the differing masses of molecular ions are a popular starting point. Including a unique fragmentation is important, too. 3) For HNMR, CNMR and IR state the peaks that are different and what makes them different (usually the presence or absence of certain groups). See if you can find two differences (in each set of IR, HNMR and CNMR spectra) due to the presence or absence of a functional group. Include peak locations. Alternatively, you can state a shift of a peak due to a change near a given functional group. Including peak locations for shifted peaks, as well as what these peaks are due to. Ideally, your focus should be on not just identifying the differences but explaining them in terms of…arrow_forward
- What steps might you take to produce the following product from the given starting material? CI Br Он до NH2 NH2arrow_forward1) The isoamyl acetate report requires eight paragraphs - four for comparison of isoamyl alcohol and isoamyl acetate (one paragraph each devoted to MS, HNMR, CNMR and IR) and four for comparison of acetic acid and isoamyl acetate ((one paragraph each devoted to MS, HNMR, CNMR and IR. 2) For MS, the differing masses of molecular ions are a popular starting point. Including a unique fragmentation is important, too. 3) For HNMR, CNMR and IR state the peaks that are different and what makes them different (usually the presence or absence of certain groups). See if you can find two differences (in each set of IR, HNMR and CNMR spectra) due to the presence or absence of a functional group. Include peak locations. Alternatively, you can state a shift of a peak due to a change near a given functional group. Including peak locations for shifted peaks, as well as what these peaks are due to. Ideally, your focus should be on not just identifying the differences but explaining them in terms of…arrow_forward№3 Fill in the below boxes. HN 1. LAH 2. H3O+ NH2arrow_forward
- For the photochemical halogenation reaction below, draw both propagation steps and include the mechanism arrows for each step. H CH ot CH3 CI-CI MM hv of CH H-CI CH3 2nd attempt See Periodic Table See Hint Draw only radical electrons; do not add lone pair electrons. Note that arrows cannot meet in "space," and must end at either bonds or at atoms. 1 i Add the missing curved arrow notation to this propagation step. 20 H ن S F P H CI Br 品arrow_forwardThe radical below can be stabilized by resonance. 4th attempt Draw the resulting resonance structure. DOCEarrow_forwardUse curved arrows to generate a second resonance form for the allylic radical formed from 2-methyl-2-pentene. 1 Draw the curved arrows that would generate a second resonance form for this radical. D 2 H S F A Бг Iarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning





