For the equilibrium
Kc is somewhat greater than 1. If water is added to a blue solution of
- (a) Does water appear in the equilibrium constant expression for this reaction?
- (b) How can adding water shift the equilibrium to the left?
- (c) Is this shift in the equilibrium in accord with Le Chatelier’s principle? Why or why not?
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Chemistry: The Molecular Science
- For the reaction N2(g)+3H2(g)2NH3(g) show that Kc = Kp(RT)2 Do not use the formula Kp = Kc(RT)5n given in the text. Start from the fact that Pi = [i]RT, where Pi is the partial pressure of substance i and [i] is its molar concentration. Substitute into Kc.arrow_forward1. The following equilibrium constants are given at 500 K: What is the value of Kp for the reaction H + Br ⇄ HBr? Kp = 8.3 × 10−44 Kp = 7.5 × 1066 Kp = 2.7 × 1033arrow_forwardAt a certain temperature, K=0.29 for the decomposition of two moles of iodine trichloride, ICl3(s), to chlorine and iodine gases. The partial pressure of chlorine gas at equilibrium is three times that of iodine gas. What are the partial pressures of iodine and chlorine at equilibrium?arrow_forward
- Write the mathematical expression for the reaction quotient, QC, for each of the following reactions (a) N2(g)+3H2(g)2NH3(g) (b) 4NH3(g)+5O2(g)4NO(g)+6H2O(g) (C) N2O2(g)2NO2(g) (d) CO2(g)+H2CO(g)+H2O(g) (e) NH4CI(s)NH3(g)+HCI(g) (f) 2Pb( NO3)2(s)2PbO(s)+4NO2(g)+O2(g) (g) 2H2(g)+O2(g)2H2O(g) (h) S8(g)8S(g)arrow_forwardWrite an equation for an equilibrium system that would lead to the following expressions (ac) for K. (a) K=(Pco)2 (PH2)5(PC2H6)(PH2O)2 (b) K=(PNH3)4 (PO2)5(PNO)4 (PH2O)6 (c) K=[ ClO3 ]2 [ Mn2+ ]2(Pcl2)[ MNO4 ]2 [ H+ ]4 ; liquid water is a productarrow_forwardWrite equilibrium constant expressions for the following reactions. For gases, use either pressures or concentrations. (a) 2 H2O2(g) 2 H2O(g) + O2(g) (b) CO(g) + O2g CO2(g) (c) C(s) + CO2(g) 2 CO(g) (d) NiO(s) + CO(g) Ni(s) + CO2(g)arrow_forward
- Kc = 5.6 1012 at 500 K for the dissociation of iodine molecules to iodine atoms. I2(g) 2 I(g) A mixture has [I2] = 0.020 mol/Land [I] = 2.0 108 mol/L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?arrow_forwardWhat is the pressure of BrCl in an equilibrium mixture of Cl2, Br2, and BrCl if the pressure of CI2 in the mixture is 0.115 atm and the pressure of Br2 in the mixture is 0.450 atm? Cl2(g)+Br2(g)2BrCl(g)KP=4.7102arrow_forwardThe diagram represents an equilibrium mixture for the reaction N2(g) + O2(g) ⇌ 2 NO(g) Estimate the equilibrium constant.arrow_forward
- Write the mathematical expression for the reaction quotient, QC, for each of the following reactions: (a) CH4(g)+CI2CH3CI(g)+HCI(g) (b) N2(g)+O2(g)2NO(g) (c) 2SO2(g)+O2(g)2SO3(g) (d) BaSO3(s)BaO(s)+SO2(g) (e) P4(g)+5O2(g)P4O10(s) (f) Br2(g)2Br(g) (g) CH4(g)+2O2(g)CO2(g)+2H2O(l) (h) CuSO45H2O(s)CuSO4(s)+5H2O(g)arrow_forwardSuppose a reaction has the equilibrium constant K = 1.3 108. What does the magnitude of this constant tell you about the relative concentrations of products and reactants that will be present once equilibrium is reached? Is this reaction likely to be a good source of the products?arrow_forwardBecause calcium carbonate is a sink for CO32- in a lake, the student in Exercise 12.39 decides to go a step further and examine the equilibrium between carbonate ion and CaCOj. The reaction is Ca2+(aq) + COj2_(aq) ** CaCO,(s) The equilibrium constant for this reaction is 2.1 X 10*. If the initial calcium ion concentration is 0.02 AI and the carbonate concentration is 0.03 AI, what are the equilibrium concentrations of the ions? A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H2COj(aq) H+(aq) + HCO}‘(aq) K = 4.4 X 10"7 She starts with 0.1000 AI carbonic acid. What are the concentrations of all species at equilibrium?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning