Interpretation:
From the equilibrium reaction of Hydrogen iodide with Hydrogen and Iodine, the cases at which the concentration of
Concept Introduction:
Equilibrium constant
Equilibrium constant
Consider the reaction where A reacts to give B.
On rearranging,
Where,
Reaction Quotient:
Reaction quotient, Q is the ratio between product of the product concentration to the product of the reactant concentration with each term raised to the power of its balancing coefficient.
Consider a general equation,
Where a, b, c and d are the stoichiometric coefficients. The reaction quotient is,
The concentration of solids and pure liquids do not change, so their concentration terms are not included in the reaction quotient expression.
Comparison of
When
When
When
Explanation of Solution
Given information,
Volume of flask is
Equilibrium constant value for the reaction,
Case a:
Calculate the
Compare
Therefore, in case a, the concentration of
Case b:
Calculate the
Compare
Therefore, in case b, the concentration of
Case c:
Calculate the
Compare
Therefore, in case c, the concentration of
Case d:
Calculate the
Compare
Therefore, in case d, the concentration of
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry: The Molecular Science
- Calculate the solubility at 25 °C of AgBr in pure water and in 0.34 M NaCN. You'll probably find some useful data in the ALEKS Data resource. Round your answer to 2 significant digits. Solubility in pure water: Solubility in 0.34 M NaCN: 7.31 × 10 M x10 Омarrow_forwardDifferentiate between normal spinels and inverse spinels.arrow_forwardNonearrow_forward
- We know that trivalent cations (Cr3+, Mn3+, V3+) with a large difference between octahedral and tetrahedral EECC, form exclusively normal spinels. Bivalent cations (Ni2+ and Cu2+) with high EECC, form inverse spinels. Is this statement correct?arrow_forward(b) Draw the product A that would be formed through the indicated sequence of steps from the given starting material. MeO (1) Br₂, hv (2) NaOEt, EtOH, A (3) BH3:THF (4) H₂O2, HO- B H₂C. CH₂ OH Editarrow_forwardSmall changes in secondary; tertiary primary; secondary primary; tertiary tertiary; secondary protein structure may lead to big changes in protein structures.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning