Interpretation:
Equilibrium reaction of
Concept Introduction:
Equilibrium constant
Equilibrium constant
Consider the reaction where A reacts to give B.
On rearranging,
Where,
Explanation of Solution
Given information,
Calculate the value of
Compare the value of
So the given reaction must proceeds toward reactants to reach equilibrium condition. So first take the reaction all the way to reactants as much as stoichiometrically possible, after that take it back to equilibrium with a very small x.
Construct ICE table,
At equilibrium,
Assume,
Solve for x,
Calculate the concentration of the substances,
Almost all the
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry: The Molecular Science
- The atmosphere consists of about 80% N2 and 20% O2, yet there are many oxides of nitrogen that are stable and can be isolated in the laboratory. (a) Is the atmosphere at chemical equilibrium with respect to forming NO? (b) If not, why doesnt NO form? If so, how is it that NO can be made and kept in the laboratory for long periods?arrow_forwardIs a system at equilibrium if the rate constants of the forward and reverse reactions are equal?arrow_forwardAt 2300 K the equilibrium constant for the formation of NO(g) is 1.7 103. N2(g) + O2(g) 2 NO(g) (a) Analysis shows that the concentrations of N2 and O2 are both 0.25 M, and that of NO is 0.0042 M under certain conditions. Is the system at equilibrium? (b) If the system is not at equilibrium, in which direction does the reaction proceed? (c) When the system is at equilibrium, what are the equilibrium concentrations?arrow_forward
- An equilibrium involving the carbonate and bicarbonate ions exists in natural waters: HCO5_(aq) «=* H+(aq) + COf-(aq) Assuming that the reactions in both directions are elementary' processes: Write rate expressions for the forward and reverse reactions. Write an expression for the equilibrium constant based on the rates of the forward and reverse reactions.arrow_forwardBecause calcium carbonate is a sink for CO32- in a lake, the student in Exercise 12.39 decides to go a step further and examine the equilibrium between carbonate ion and CaCOj. The reaction is Ca2+(aq) + COj2_(aq) ** CaCO,(s) The equilibrium constant for this reaction is 2.1 X 10*. If the initial calcium ion concentration is 0.02 AI and the carbonate concentration is 0.03 AI, what are the equilibrium concentrations of the ions? A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H2COj(aq) H+(aq) + HCO}‘(aq) K = 4.4 X 10"7 She starts with 0.1000 AI carbonic acid. What are the concentrations of all species at equilibrium?arrow_forwardAt room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 × 1030. Is this reaction product-favored or reactant-favored? Explain your answer. In the atmosphere at room temperature the concentration of N2 is 0.33 mol/L, and the concentration of O2 is about 25% of that value. Calculate the equilibrium concentration of NO in the atmosphere produced by the reaction of N2 and O2. How does this affect your answer to Question 11?arrow_forward
- A 2.500-mol sample of phosphorus pentachloride, PCl5, decomposes at 160C and 1.00 atm to give 0.338 mol of phosphorus trichloride, PCl3, at equilibrium. PCl5(g)PCl3(g)+Cl2(g) What is the composition of the final reaction mixture?arrow_forwardBecause carbonic acid undergoes a second ionization, the student in Exercise 12.39 is concerned that the hydrogen ion concentration she calculated is not correct. She looks up the equilibrium constant for the reaction HCO,-(aq) «=* H+(aq) + COf'(aq) Upon finding that the equilibrium constant for this reaction is 4.8 X 10“H, she decides that her answer in Exercise 12.39 is correct. Explain her reasoning. A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H,CO,(aq) 5=6 H+(aq) + HCO,'(aq) K = 4.4 X 10'7She starts with 0.1000 A1 carbonic acid. W hat are the concentrations of all species at equilibrium?arrow_forwardIn the gas phase, acetic acid exists as an equilibrium of monomer and dimer molecules. (The dimer consists of two molecules linked through hydrogen bonds.) The equilibrium constant, Kc, at 25 C for the monomer-dimer equilibrium 2 CH3CO2H (CH3CO2H)2 has been determined to be 3.2 104. Assume that acetic acid is present initially at a concentration of 5.4 104 mol/L at 25 C and that no dimer is present initially. (a) What percentage of the acetic acid is converted to dimer? (b) As the temperature increases, in which direction does the equilibrium shift? (Recall that hydrogen-bond formation is an exothermic process.)arrow_forward
- Suppose a reaction has the equilibrium constant K = 1.3 108. What does the magnitude of this constant tell you about the relative concentrations of products and reactants that will be present once equilibrium is reached? Is this reaction likely to be a good source of the products?arrow_forwardCyclohexane, C6H12, a hydrocarbon, can isomerize or change into methylcyclopentane, a compound of the same formula (C5H9CH3) but with a different molecular structure. sssss The equilibrium constant has been estimated to be 0.12 at 25 C. If you had originally placed 0.045 mol of cyclohexane in a 2.8-L flask, what would be the concentrations of cyclohexane and methylcyclopentane when equilibrium is established?arrow_forwardA graduate student places 0.272 mol of PCl3(g) and 8.56 104 mol of PCl5(g) into a 0.718-L flask at a certain temperature. PCl5(g) is known to decompose as follows: PCl5(g)PCl3(g)+Cl2(g) After the reaction attains equilibrium, the student finds that the flask contains 2.51 104 mol of Cl2. Calculate the equilibrium constant Kc for the reaction at this temperature. a 0.114 b 8.51 102 c 0.157 d 8.88 104 e 2.40 104arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning