Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 8OQ
To determine
The position
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 50.0 cm long spring with spring constant 237 N/m has a mass 1.8 kg attached to it, and it can
oscillate on a horizontal table without any friction. The spring is pulled by a distance 5 cm from the
resting position and released. What is the kinetic energy (in joules) of the mass at the instant when
the length of the spring is 49 cm.
The maximum speed of the bob of a
simple pendulum is vmax = 1.8 m/s. At
the position where the potential energy is
equal to the kinetic energy (U = K), the
speed of the bob is:
O v = 1.16 m/s
O v = 1.04 m/s
O v = 1.27 m/s
O v = 1.38 m/s
Two identical springs, both of force constant k=200 N/m, are fixed at opposite ends of a
level track. A 5.0 kg block is pressed against the left spring, compressing it by 0.15 m. The
block (initially at rest) is then released. The entire track is frictionless except for the section
between A and B. Given that the coefficient of friction between block and track is 0.08 and
the length of AB is 0.25 m, determine where the block comes to rest, as measured from A.
hord L
m
1oooooooo
m
A
Chapter 12 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 12.1 - A block on the end of a spring is pulled to...Ch. 12.2 - Consider a graphical representation (Fig. 12.3) of...Ch. 12.2 - Figure 12.4 shows two curves representing...Ch. 12.2 - An object of mass m is hung from a spring and set...Ch. 12.4 - A grandfather clock depends on the period of a...Ch. 12.5 - Prob. 12.6QQCh. 12 - Which of the following statements is not true...Ch. 12 - Prob. 2OQCh. 12 - Prob. 3OQCh. 12 - Prob. 4OQ
Ch. 12 - Prob. 5OQCh. 12 - Prob. 6OQCh. 12 - If a simple pendulum oscillates with small...Ch. 12 - Prob. 8OQCh. 12 - Prob. 9OQCh. 12 - Prob. 10OQCh. 12 - Prob. 11OQCh. 12 - Prob. 12OQCh. 12 - Prob. 13OQCh. 12 - You attach a block to the bottom end of a spring...Ch. 12 - Prob. 15OQCh. 12 - Prob. 1CQCh. 12 - The equations listed in Table 2.2 give position as...Ch. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - The mechanical energy of an undamped blockspring...Ch. 12 - Prob. 8CQCh. 12 - Prob. 9CQCh. 12 - Prob. 10CQCh. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Consider the simplified single-piston engine in...Ch. 12 - A 0.60-kg block attached to a spring with force...Ch. 12 - When a 4.25-kg object is placed on top of a...Ch. 12 - The position of a particle is given by the...Ch. 12 - You attach an object to the bottom end of a...Ch. 12 - A 7.00-kg object is hung from the bottom end of a...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - A 1.00-kg glider attached to a spring with a force...Ch. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - A 500-kg object attached to a spring with a force...Ch. 12 - In an engine, a piston oscillates with simple...Ch. 12 - A vibration sensor, used in testing a washing...Ch. 12 - A blockspring system oscillates with an amplitude...Ch. 12 - A block of unknown mass is attached to a spring...Ch. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - A 200-g block is attached to a horizontal spring...Ch. 12 - A 50.0-g object connected to a spring with a force...Ch. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - Prob. 24PCh. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - Prob. 28PCh. 12 - The angular position of a pendulum is represented...Ch. 12 - A small object is attached to the end of a string...Ch. 12 - A very light rigid rod of length 0.500 m extends...Ch. 12 - A particle of mass m slides without friction...Ch. 12 - Review. A simple pendulum is 5.00 m long. What is...Ch. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Show that the time rate of change of mechanical...Ch. 12 - Prob. 37PCh. 12 - Prob. 38PCh. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - Prob. 42PCh. 12 - Prob. 43PCh. 12 - Prob. 44PCh. 12 - Four people, each with a mass of 72.4 kg, are in a...Ch. 12 - Prob. 46PCh. 12 - Prob. 47PCh. 12 - Prob. 48PCh. 12 - Prob. 49PCh. 12 - Prob. 50PCh. 12 - Prob. 51PCh. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - A block of mass m is connected to two springs of...Ch. 12 - Review. One end of a light spring with force...Ch. 12 - Prob. 58PCh. 12 - A small ball of mass M is attached to the end of a...Ch. 12 - Prob. 60PCh. 12 - Prob. 61PCh. 12 - Prob. 62PCh. 12 - Prob. 63PCh. 12 - A smaller disk of radius r and mass m is attached...Ch. 12 - A pendulum of length L and mass M has a spring of...Ch. 12 - Consider the damped oscillator illustrated in...Ch. 12 - An object of mass m1 = 9.00 kg is in equilibrium...Ch. 12 - Prob. 68PCh. 12 - A block of mass M is connected to a spring of mass...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the data for a block of mass m = 0.250 kg given in Table P16.59. Friction is negligible. a. What is the mechanical energy of the blockspring system? b. Write expressions for the kinetic and potential energies as functions of time. c. Plot the kinetic energy, potential energy, and mechanical energy as functions of time on the same set of axes. Problems 5965 are grouped. 59. G Table P16.59 gives the position of a block connected to a horizontal spring at several times. Sketch a motion diagram for the block. Table P16.59arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardThe position of a particle attached to a vertical spring is given by y=(y0cost)j. The y axis points upward, y0 = 14.5 cm. and = 18.85 rad/s. Find the position of the particle at a. t = 0 and b. t = 9.0 s. Give your answers in centimeters.arrow_forward
- A grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forwardUse the data in Table P16.59 for a block of mass m = 0.250 kg and assume friction is negligible. a. Write an expression for the force FH exerted by the spring on the block. b. Sketch FH versus t.arrow_forwardA 50.0-g object connected to a spring with a force constant of 35.0 N/m oscillates with an amplitude of 4.00 cm on a frictionless, horizontal surface. Find (a) the total energy of the system and (b) the speed of the object when its position is 1.00 cm. Find (c) the kinetic energy and (d) the potential energy when its position is 3.00 cm.arrow_forward
- A lightweight spring with spring constant k = 225 N/m is attached to a block of mass m1 = 4.50 kg on a frictionless, horizontal table. The blockspring system is initially in the equilibrium configuration. A second block of mass m2 = 3.00 kg is then pushed against the first block, compressing the spring by x = 15.0 cm as in Figure P16.77A. When the force on the second block is removed, the spring pushes both blocks to the right. The block m2 loses contact with the springblock 1 system when the blocks reach the equilibrium configuration of the spring (Fig. P16.77B). a. What is the subsequent speed of block 2? b. Compare the speed of block 1 when it again passes through the equilibrium position with the speed of block 2 found in part (a). 77. (a) The energy of the system initially is entirely potential energy. E0=U0=12kymax2=12(225N/m)(0.150m)2=2.53J At the equilibrium position, the total energy is the total kinetic energy of both blocks: 12(m1+m2)v2=12(4.50kg+3.00kg)v2=(3.75kg)v2=2.53J Therefore, the speed of each block is v=2.53J3.75kg=0.822m/s (b) Once the second block loses contact, the first block is moving at the speed found in part (a) at the equilibrium position. The energy 01 this spring-block 1 system is conserved, so when it returns to the equilibrium position, it will be traveling at the same speed in the opposite direction, or v=0.822m/s. FIGURE P16.77arrow_forwardYou attach a block to the bottom end of a spring hanging vertically. You slowly let the block move down and find that it hangs at rest with the spring stretched by 15.0 cm. Next, you lift the block back up to the initial position and release it from rest with the spring unstretched. What maximum distance does it move down? (a) 7.5 cm (b) 15.0 cm (c) 30.0 cm (d) 60.0 cm (e) The distance cannot be determined without knowing the mass and spring constant.arrow_forwardReview. This problem extends the reasoning of Problem 41 in Chapter 9. Two gliders are set in motion on an air track. Glider 1 has mass m1 = 0.240 kg and moves to the right with speed 0.740 m/s. It will have a rear-end collision with glider 2, of mass m2 = 0.360 kg, which initially moves to the right with speed 0.120 m/s. A light spring of force constant 45.0 N/m is attached to the back end of glider 2 as shown in Figure P9.41. When glider 1 touches the spring, superglue instantly and permanently makes it stick to its end of the spring. (a) Find the common speed the two gliders have when the spring is at maximum compression. (b) Find the maximum spring compression distance. The motion after the gliders become attached consists of a combination of (1) the constant-velocity motion of the center of mass of the two-glider system found in part (a) and (2) simple harmonic motion of the gliders relative to the center of mass. (c) Find the energy of the center-of-mass motion. (d) Find the energy of the oscillation.arrow_forward
- A small particle of mass m is pulled to the top of a friction less half-cylinder (of radius R) by a light cord that passes over the top of the cylinder as illustrated in Figure P7.15. (a) Assuming the particle moves at a constant speed, show that F = mg cos . Note: If the particle moves at constant speed, the component of its acceleration tangent to the cylinder must be zero at all times. (b) By directly integrating W=Fdr, find the work done in moving the particle at constant speed from the bottom to the top of the hall-cylinder. Figure P7.15arrow_forwardAn inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardA childs pogo stick (Fig. P7.69) stores energy in a spring with a force constant of 2.50 104 N/m. At position (x = 0.100 m), the spring compression is a maximum and the child is momentarily at rest. At position (x = 0), the spring is relaxed and the child is moving upward. At position , the child is again momentarily at rest at the top of the jump. The combined mass of child and pogo stick is 25.0 kg. Although the boy must lean forward to remain balanced, the angle is small, so lets assume the pogo stick is vertical. Also assume the boy does not bend his legs during the motion. (a) Calculate the total energy of the childstickEarth system, taking both gravitational and elastic potential energies as zero for x = 0. (b) Determine x. (c) Calculate the speed of the child at x = 0. (d) Determine the value of x for which the kinetic energy of the system is a maximum. (e) Calculate the childs maximum upward speed. Figure P7.69arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY