Concept explainers
(a)
The force constant of the spring.
(a)
Answer to Problem 18P
The force constant of the spring is
Explanation of Solution
Write the expression to calculate the force constant of the spring.
Here,
Conclusion:
Substitute
Thus, the force constant of the spring is
(b)
The frequency of oscillations.
(b)
Answer to Problem 18P
The frequency of oscillations is
Explanation of Solution
Write the formula to calculate the angular frequency for the object.
Here,
Write the formula to calculate the frequency of oscillations.
Here,
Conclusion:
Substitute
Substitute
Thus, the frequency of oscillations is
(c)
The value for the maximum speed of the object.
(c)
Answer to Problem 18P
The value for the maximum speed of the object is
Explanation of Solution
Write the expression to calculate the maximum speed of the object.
Here,
Conclusion:
Substitute
Thus, the value for the maximum speed of the object is
(d)
The position at which the maximum speed occur.
(d)
Answer to Problem 18P
The position at which the maximum speed occur is
Explanation of Solution
The maximum speed of a
Thus, the position at which the maximum speed occur is
(e)
The maximum acceleration of the object.
(e)
Answer to Problem 18P
The maximum acceleration of the object is
Explanation of Solution
Write the expression to calculate the maximum acceleration of the object.
Here,
Conclusion:
Substitute
Thus, the maximum acceleration of the object is
(f)
The position at which the maximum acceleration occur.
(f)
Answer to Problem 18P
The position at which the maximum acceleration occur is
Explanation of Solution
The object attains its maximum acceleration when the direction of the object is reversed. The object reverses its direction when it is at maximum distance from the equilibrium x position.
The object reverses its direction at the maximum position of
Thus, the position at which the maximum acceleration occur is
(g)
The total energy of the oscillating system.
(g)
Answer to Problem 18P
The total energy of the oscillating system is
Explanation of Solution
Write the expression to calculate the total energy of the oscillating system.
Here,
Conclusion:
Substitute
Thus, the total energy of the oscillating system is
(h)
The speed of the object when its position is one third of maximum value.
(h)
Answer to Problem 18P
The speed of the object when its position is one third of maximum value is
Explanation of Solution
Write the expression to calculate the speed of the object at
Conclusion:
Substitute
Thus, the speed of the object when its position is one third of maximum value is
(i)
The acceleration of the object when its position is one third of maximum value.
(i)
Answer to Problem 18P
The acceleration of the object when its position is one third of maximum value is
Explanation of Solution
Write the expression to calculate the speed of the object at
Conclusion:
Substitute
Thus, the acceleration of the object when its position is one third of maximum value is
Want to see more full solutions like this?
Chapter 12 Solutions
Principles of Physics: A Calculus-Based Text
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Look at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning