
Concept explainers
(a)
Prove that the maximum stretching of spring from mean position is
(a)

Answer to Problem 60P
It is proved that the maximum stretching of spring from mean position is
Explanation of Solution
Write the relation between force on spring and maximum static frictional force.
Here,
Write the expression for
Here,
Rewrite the first equation by substituting the above one.
Conclusion:
Rewrite the expression for
Therefore, it is proved that the maximum stretching of spring from mean position is
(b)
Prove that block oscillates about mean point when spring is stretched by
(b)

Answer to Problem 60P
It is proved that block oscillates about mean point when spring is stretched by
Explanation of Solution
The block will be almost at rest at the break point because of the smaller value of velocity. The block starts to oscillate s soon when the force on block becomes
Here,
Rewrite the above equation by multiplying and dividing the second term with
Express the term
Here,
Rewrite the expression for
Conclusion:
From the above calculation, it is evident that block starts to be in simple harmonic motion about mean position on displacing the spring
Therefore, it is proved that block oscillates about mean point when spring is stretched by
(c)
Plot the variation of position of block with time.
(c)

Answer to Problem 60P
The plot is
Explanation of Solution
The graph is plotted with time on x-axis and position on y-axis.
The dotted line along x-axis denotes the function
Conclusion:
Therefore, the graph is plotted
(d)
Prove that the amplitude of oscillation is
(d)

Answer to Problem 60P
It is proved that the amplitude of oscillation is
Explanation of Solution
Write the expression for
Rewrite the above expression by substituting
Amplitude is the maximum displacement from the mean position only. Rewrite the expression as amplitude.
Here,
On pulling the block to distance
Conclusion:
Therefore, it is proved that the amplitude of oscillation is
(e)
Prove that the period of oscillation is
(e)

Answer to Problem 60P
It is proved that the period of oscillation is
Explanation of Solution
Write the expression for time taken by block to move with the board
Here,
Rewrite the expression by substituting
Time taken by block to move from mean position to an extreme position.
Here,
The period of oscillation is the sum of
Here,
Conclusion:
Rewrite the above equation by substituting the relations for
Therefore, It is proved that the period of oscillation is
Want to see more full solutions like this?
Chapter 12 Solutions
Principles of Physics: A Calculus-Based Text
- 12. What is the angle between two unit vectors if their dot product is 0.5?arrow_forwardIf the car in the previous problem increases its power output by 10% (by pressing the gas pedal farther down), at what rate will the car accelerate? Hint: Consider the net force. In the previous problem the power was 31.8kWarrow_forwardWhat power is required (at the wheels) for a 1400 kg automobile to climb a 4% grade at a constant speed 30 m/s while it is opposed by drag and rolling resistance forces totaling 500 N?arrow_forward
- No chatgpt pls will upvotearrow_forwardAs a box is lifted against gravity and placed on a shelf, how does the work done by the lifter compare with the work done by gravity? What is the net work done on the box? What does this imply about its change in kinetic energy? Use definitions and mathematics from this chapter to answer these questions.arrow_forwardAs I carry a box up a flight of stairs, am I doing positive work or negative work on the box? Provide a mathematical explanation.arrow_forward
- Air temperature of 37 °C increases swimming pool temperature of 2.55 °C. What is the fraction of the water in the pool must evaporate during this time to carry enough energy to keep the temperature of the pool constant? 4186 J/(kg°C) = specific heat of water 2,430,000 (2.43 x 106) J/kg = latent heat of vaporization for the water in the pool.arrow_forwardThe iceberg requires 7.4 x 1020 Joules of energy to melt it completely. It absorbs energy from the Sun at a constant average rate of 88 Watts/m2. The total surface area of iceberg exposed to the sunlight is 12 billion (1.2 x 1010) square meters. How long will it take for sunlight to melt the entire iceberg in yearsarrow_forward1.0 kg block of ice to melt in the kitchen. The temperature in the kitchen is 31 °C. The ice starts out at 0 °C and takes an hour to melt and reach the same temperature as the surrounding room (31 °C). How much heat does the 1.0 kg of ice/water absorb from the room as it melts and heats up to 31 °C in Joules absorbed? Latent heat of fusion for water/ice is 334,000 J/kg Specific heat of water is 4186 J/kg°Carrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





