Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 8CQ
To determine
The necessity of damping for the real vibration.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A mass of 0.5 kg stretches a spring by 20 cm. Neglect damping constant,
an external vibrations create a force of F(t)= 8cos3t N.
Note: Round all answers to 1 decimal place.
1. Find the steady-state solution. u(t)=
2. Find the amplitude. A
3. Find the phase shift. &=te
Knowledge of damped oscillating systems comes in very handy when designing car suspension systems, where coil springs are attached to the driving axle near the tires.
What type of damping would be ideal for a suspension system that emphasizes car durability and passenger comfort, and why?
If you need numerical values to justify or elaborate on your answer, you can simulate the car+passenger system as a 3,000 kg mass attached to a single spring with a k-constant of your choosing.
A harmonic oscillator has angular frequency w and amplitude A. Assume
that the elastic potential energy of the oscillator is zero at x = 0. At an
instant when the displacement is equal to A/5, what fraction of the total
energy of the oscillator is kinetic?
Give the final answer to 2 decimal places.
Chapter 12 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 12.1 - A block on the end of a spring is pulled to...Ch. 12.2 - Consider a graphical representation (Fig. 12.3) of...Ch. 12.2 - Figure 12.4 shows two curves representing...Ch. 12.2 - An object of mass m is hung from a spring and set...Ch. 12.4 - A grandfather clock depends on the period of a...Ch. 12.5 - Prob. 12.6QQCh. 12 - Which of the following statements is not true...Ch. 12 - Prob. 2OQCh. 12 - Prob. 3OQCh. 12 - Prob. 4OQ
Ch. 12 - Prob. 5OQCh. 12 - Prob. 6OQCh. 12 - If a simple pendulum oscillates with small...Ch. 12 - Prob. 8OQCh. 12 - Prob. 9OQCh. 12 - Prob. 10OQCh. 12 - Prob. 11OQCh. 12 - Prob. 12OQCh. 12 - Prob. 13OQCh. 12 - You attach a block to the bottom end of a spring...Ch. 12 - Prob. 15OQCh. 12 - Prob. 1CQCh. 12 - The equations listed in Table 2.2 give position as...Ch. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - The mechanical energy of an undamped blockspring...Ch. 12 - Prob. 8CQCh. 12 - Prob. 9CQCh. 12 - Prob. 10CQCh. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Consider the simplified single-piston engine in...Ch. 12 - A 0.60-kg block attached to a spring with force...Ch. 12 - When a 4.25-kg object is placed on top of a...Ch. 12 - The position of a particle is given by the...Ch. 12 - You attach an object to the bottom end of a...Ch. 12 - A 7.00-kg object is hung from the bottom end of a...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - A 1.00-kg glider attached to a spring with a force...Ch. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - A 500-kg object attached to a spring with a force...Ch. 12 - In an engine, a piston oscillates with simple...Ch. 12 - A vibration sensor, used in testing a washing...Ch. 12 - A blockspring system oscillates with an amplitude...Ch. 12 - A block of unknown mass is attached to a spring...Ch. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - A 200-g block is attached to a horizontal spring...Ch. 12 - A 50.0-g object connected to a spring with a force...Ch. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - Prob. 24PCh. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - Prob. 28PCh. 12 - The angular position of a pendulum is represented...Ch. 12 - A small object is attached to the end of a string...Ch. 12 - A very light rigid rod of length 0.500 m extends...Ch. 12 - A particle of mass m slides without friction...Ch. 12 - Review. A simple pendulum is 5.00 m long. What is...Ch. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Show that the time rate of change of mechanical...Ch. 12 - Prob. 37PCh. 12 - Prob. 38PCh. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - Prob. 42PCh. 12 - Prob. 43PCh. 12 - Prob. 44PCh. 12 - Four people, each with a mass of 72.4 kg, are in a...Ch. 12 - Prob. 46PCh. 12 - Prob. 47PCh. 12 - Prob. 48PCh. 12 - Prob. 49PCh. 12 - Prob. 50PCh. 12 - Prob. 51PCh. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - A block of mass m is connected to two springs of...Ch. 12 - Review. One end of a light spring with force...Ch. 12 - Prob. 58PCh. 12 - A small ball of mass M is attached to the end of a...Ch. 12 - Prob. 60PCh. 12 - Prob. 61PCh. 12 - Prob. 62PCh. 12 - Prob. 63PCh. 12 - A smaller disk of radius r and mass m is attached...Ch. 12 - A pendulum of length L and mass M has a spring of...Ch. 12 - Consider the damped oscillator illustrated in...Ch. 12 - An object of mass m1 = 9.00 kg is in equilibrium...Ch. 12 - Prob. 68PCh. 12 - A block of mass M is connected to a spring of mass...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardC, N A uniform plank of length L and mass M is balanced on a fixed, semicircular bowl of radius R (Fig. P16.19). If the plank is tilted slightly from its equilibrium position and released, will it execute simple harmonic motion? If so, obtain the period of its oscillation.arrow_forwardA simple harmonic oscillator has amplitude A and period T. Find the minimum time required for its position to change from x = A to x = A/2 in terms of the period T.arrow_forward
- The total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forward(a) If frequency is not constant for some oscillation, can the oscillation be SHM? (b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forwardA body performs simple harmonic motion in a straight line. Its velocity is 12 m/s when the displacement is 50 mm, and 3 m/s when the displacement is 100 mm, the displacement being measured from the mid - position. Calculate the frequency and amplitude of the motion. What is the acceleration when the displacement is 75 mm?arrow_forward
- A pendulum of length L = 0.61m and mass 4.8Kg has a spring of force constant k =610 N/m connected to it at a distance h = 0.35m below its point of suspension. Find the frequency 'f' of vibration of the system for small values of the amplitude (small 6). Assume the vertical suspension of length L is rigid, but ignore its mass. %3D Use g=9.8 for gravity. Round your answer to 3 decimal places.arrow_forwardYou are pushing your nephew on a playground swing. The swing seat is suspended from a horizontal bar by two light chains. Based on your experience with swings, estimate the length of each chain. Treat the motion of the child as that of a simple pendulum and assume that for safety the amplitude of the motion is kept small. You give your nephew a light push each time he reaches his closest distance from you. How much time elapses between your pushes?arrow_forwardChapter 15, Problem 051 GO In the figure, a stick of length L = 1.9 m oscillates as a physical pendulum. (a) What value of distance x between the stick's center of mass and its pivot point o gives the least period? (b) What is that least period? L/2 (a) Number Units (b) Number Units udy Click if you would like to Show Work for this question: Open Show Workarrow_forward
- P1arrow_forwardWhat is the smallest positive phase constant (ø) for the harmonic oscillator with the position function x(t) given in the figure below if the position function has the form x = Acos(ωt+ø)? The vertical axis scale is set by xs = 6.0 cm. Answer in radians. Hint: Evaluate at t=0 and solve for phi.arrow_forwardA mass of 562 g stretches a spring by 6.9 cm. The damping constant is c = 0.37. The spring is set in motion from its equilibrium position with zero velocity. What is the w real part of the complex root of the homogeneous equation? Use g=9.8 Express your answer in two decimal places. Moving to another question will save this response. Question 2 of 10arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY