Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 51P
To determine
The vibrational frequency of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We can model a molecular bond as a spring between two atoms that vibrate with simple harmonic motion.The figure below shows an simple harmonic motion approximation for the potential energy of an HCl molecule.This is a good approximation when E < 4 ×10^−19. Since mH << mCl, we assume that the hydrogen atomoscillates back and forth while the chlorine atom remains at rest. Estimate the oscillation frequency of theHCl molecule using information in the figure below.
Carbon-14 (14C) is an unstable isotope of carbon. It has the same chemical properties and electronic structure as the much more abundant isotope carbon-12 (12C), but it has different nuclear properties. Its mass is 14 u, greater than that of carbon-12 because of the two extra neutrons in the carbon-14 nucleus. Assume the CO molecular potential energy is the same for both isotopes of carbon. (a) What is the vibrational frequency of 14CO? (b) What is the moment of inertia of 14CO? (c) What wavelengths of light can be absorbed by 14CO in the (υ = 0, J = 10) state that cause it to end up in the υ = 1 state?
Two blocks of masses m1=1.0 kg and m2=3 kg are connected by an ideal spring of force constant k=4 N/m and relaxed length L. If we make them oscillate horizontally on a frictionless surface, releasing them from rest after stretching the spring, what will be the angular frequency ω of the oscillation? Choose the closest option.
Hint: Find the differential equation for spring deformation.
Chapter 12 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 12.1 - A block on the end of a spring is pulled to...Ch. 12.2 - Consider a graphical representation (Fig. 12.3) of...Ch. 12.2 - Figure 12.4 shows two curves representing...Ch. 12.2 - An object of mass m is hung from a spring and set...Ch. 12.4 - A grandfather clock depends on the period of a...Ch. 12.5 - Prob. 12.6QQCh. 12 - Which of the following statements is not true...Ch. 12 - Prob. 2OQCh. 12 - Prob. 3OQCh. 12 - Prob. 4OQ
Ch. 12 - Prob. 5OQCh. 12 - Prob. 6OQCh. 12 - If a simple pendulum oscillates with small...Ch. 12 - Prob. 8OQCh. 12 - Prob. 9OQCh. 12 - Prob. 10OQCh. 12 - Prob. 11OQCh. 12 - Prob. 12OQCh. 12 - Prob. 13OQCh. 12 - You attach a block to the bottom end of a spring...Ch. 12 - Prob. 15OQCh. 12 - Prob. 1CQCh. 12 - The equations listed in Table 2.2 give position as...Ch. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - The mechanical energy of an undamped blockspring...Ch. 12 - Prob. 8CQCh. 12 - Prob. 9CQCh. 12 - Prob. 10CQCh. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Consider the simplified single-piston engine in...Ch. 12 - A 0.60-kg block attached to a spring with force...Ch. 12 - When a 4.25-kg object is placed on top of a...Ch. 12 - The position of a particle is given by the...Ch. 12 - You attach an object to the bottom end of a...Ch. 12 - A 7.00-kg object is hung from the bottom end of a...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - A 1.00-kg glider attached to a spring with a force...Ch. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - A 500-kg object attached to a spring with a force...Ch. 12 - In an engine, a piston oscillates with simple...Ch. 12 - A vibration sensor, used in testing a washing...Ch. 12 - A blockspring system oscillates with an amplitude...Ch. 12 - A block of unknown mass is attached to a spring...Ch. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - A 200-g block is attached to a horizontal spring...Ch. 12 - A 50.0-g object connected to a spring with a force...Ch. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - Prob. 24PCh. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - Prob. 28PCh. 12 - The angular position of a pendulum is represented...Ch. 12 - A small object is attached to the end of a string...Ch. 12 - A very light rigid rod of length 0.500 m extends...Ch. 12 - A particle of mass m slides without friction...Ch. 12 - Review. A simple pendulum is 5.00 m long. What is...Ch. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Show that the time rate of change of mechanical...Ch. 12 - Prob. 37PCh. 12 - Prob. 38PCh. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - Prob. 42PCh. 12 - Prob. 43PCh. 12 - Prob. 44PCh. 12 - Four people, each with a mass of 72.4 kg, are in a...Ch. 12 - Prob. 46PCh. 12 - Prob. 47PCh. 12 - Prob. 48PCh. 12 - Prob. 49PCh. 12 - Prob. 50PCh. 12 - Prob. 51PCh. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - A block of mass m is connected to two springs of...Ch. 12 - Review. One end of a light spring with force...Ch. 12 - Prob. 58PCh. 12 - A small ball of mass M is attached to the end of a...Ch. 12 - Prob. 60PCh. 12 - Prob. 61PCh. 12 - Prob. 62PCh. 12 - Prob. 63PCh. 12 - A smaller disk of radius r and mass m is attached...Ch. 12 - A pendulum of length L and mass M has a spring of...Ch. 12 - Consider the damped oscillator illustrated in...Ch. 12 - An object of mass m1 = 9.00 kg is in equilibrium...Ch. 12 - Prob. 68PCh. 12 - A block of mass M is connected to a spring of mass...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- C, N A uniform plank of length L and mass M is balanced on a fixed, semicircular bowl of radius R (Fig. P16.19). If the plank is tilted slightly from its equilibrium position and released, will it execute simple harmonic motion? If so, obtain the period of its oscillation.arrow_forwardA silver atom in a solid oscillates in simple harmonic motion in some direction with a frequency of 10¹2 per second. What is the force constant of the bonds connecting one atom with the other? (Take, molecular weight of silver = 108 and Avogadro number = 6.02 × 10²3 g mol-¹)arrow_forwardA physical pendulum consists of a disk of radius R = 2 m, whose mass is homogeneously distributed and is equal to 6 kg, is suspended just at a point on its perimeter. The puck is displaced from its equilibrium position. until it forms an angle θ = π/16 with respect to the vertical and is then released. find: a) The period of the system. b) Make a graph of angular position v/s time where the amplitude, initial phase and system period.arrow_forward
- The second was officially defined by the Simple Harmonic Motion of the Caesium 133 atom. It has a precise frequency of 9.19 x 10^9 Hz and a mass of 2.207 x 10–25 kg. Assume the amplitude of the atoms motion is 3.34 x 10-10 m. What is the spring constant of the atom's vibration?arrow_forwardThe vibration frequencies of atoms in solids at normal temperaturesare of the order of 1013 Hz. Imagine the atoms to be connectedto one another by springs. Suppose that a single silver atom in a solidvibrates with this frequency and that all the other atoms are at rest.Compute the effective spring constant. One mole of silver (6.02 1023 atoms) has a mass of 108 g.arrow_forwardThe chemical bond between the two atoms in a diatomic oxygen molecule acts very much like a spring, such that each oxygen atom behaves like a simple harmonic oscillator. If we observe the oxygen atoms vibrating at a frequency of 3.0 x 10^13 Hz, what is the spring constant of the O—O bond? The mass of an oxygen atom is 2.66 x 10 ^-26 kg.arrow_forward
- The chemical bond between the two atoms in a diatomic oxygen molecule acts very much like a spring, such that each oxygen atom behaves like a simple harmonic oscillator. If we observe the oxygen atoms vibrating at a frequency of 3.0 x 10^13 Hz, what is the spring constant of the O—O bond? The mass of an oxygen atom is 2.66 x^-26 kg.arrow_forwardDeuterium is an isotope of hydrogen which has one proton and one neutron in its nucleus, as opposed to just a single proton. Consequently, the deuterium molecule (D2) has twice the mass of a hydrogen molecule (H2). If H2 has a vibrational frequency of 1.30 ✕ 1014 Hz, what is the vibrational frequency of D2 (in Hz)? Assume that the "spring constant" is the same for the two molecules. (This is because the force between the two atoms in the molecule depends on the electrons and the electric charges, which are the same for the two molecules, and not on the masses of the nuclei.) ----- Hzarrow_forwardA simple pendulum whose string measures l = 2 m and whose mass is 5 kg is displaced from its equilibrium position. until it forms an angle θ = π/16 with respect to the vertical and is then released. find: a) The period of the system. b) Make a graph of angular position v/s time where the amplitude, initial phase and system period.arrow_forward
- a particle of mass m makes simple harmonic motion with force constant k around the equilibrium position x = 0. Calculate the valu of the amplitude and the phase constant if the initial conditions are x(0) = 0 and v(0) = -Vi (vi > 0). Draw x-t, v - t and a - t figures for one complete cycle of oscillations.arrow_forwardAssuming that the vibrations of 35C2 a molecule are equivalent to those of a harmonic oscillator with a force constant Kf=329Nm-1 , what is the zero point energy of vibration of this molecule? 3.29x10-21 J 9.67X10-22 J 6.044 X 10-20 J 35.45 X10-23 J 5.61 X 10-21 Jarrow_forwardScientists have developed a clever way to measure a mass of virus using a spring. A cantilever beam in the scanning electron microscope image below is like a diving board, except that it is extremely small (a couple of micrometer). The cantilever beam with mass m can oscillate (imagine a vibrating diving board) and it can be modeled as a spring with a spring constant k. What you can measure experimentally is the frequency of oscillation of the cantilever first without the virus (f1) and after the virus had attached itself to the cantilever (f2). (a) Find the mass of virus from f1 and f2 (assume that we don’t know the spring constant k) (b) Suppose the mass of cantilever is 10.0 * 10^-16 g and a frequency of 2.00 * 10^15 Hz without the virus and 2.87 * 10^14 Hz with the virus. What is the mass of the virus?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY