
Concept explainers
(a)
The position of
(a)

Answer to Problem 46P
The position of
Explanation of Solution
The general expression for the position of the object is given by,
Here,
Write the expression for the force due to a spring.
Here,
Write the expression for the force acting on an object.
Here,
Equate equation (II) and (III) and solve for
Take the
Write the expression for the angular frequency.
Conclusion:
Substitute
Substitute
Substitute
Therefore, The position of
(b)
The distance traveled by the vibrating object in part (a).
(b)

Answer to Problem 46P
The distance traveled by the vibrating object in part (a) is
Explanation of Solution
The distance traveled is equal to the number of oscillations multiplied by the distance traveled in a single time period.
The time period is given by,
Here,
The number of oscillations made by the spring is given by,
Here,
The distance travelled by the mass in one complete oscillation is
The total distance traveled in
Conclusion:
Substitute
Substitute
Substitute e
Therefore, The distance traveled by the vibrating object in part (a) is
(c)
The position of the object
(c)

Answer to Problem 46P
The position of the object
Explanation of Solution
Substitute
Substitute
Substitute
Therefore, the position of
Conclusion:
Therefore, the position of the object
(d)
The distance traveled by the object in part (c)
(d)

Answer to Problem 46P
The distance traveled by the object in part (c) is
Explanation of Solution
The distance traveled is equal to the number of oscillations multiplied by the distance traveled in a single time period.
The time period is given by,
The number of oscillations made by the spring is given by,
The distance travelled by the mass in one complete oscillation is
The total distance traveled in
Conclusion:
Substitute
Substitute
Substitute e
Therefore, the distance traveled by the vibrating object in part (c) is
(e)
The reason for the different answers to part (a) and (c) when the initial data in parts (a) and (c) are so similar and the answers to parts (b) and (d) are relatively close.
(e)

Answer to Problem 46P
The answers in parts a and b are different because of the difference in angular velocities.
Explanation of Solution
Diverging patterns of oscillations which starts out in phase but becoming completely out of phase changes the answers in part (a) and (b). Since the
For parts c and d, the distance traveled depends only on the angular velocity such that their difference is not so large.
Want to see more full solutions like this?
Chapter 12 Solutions
Principles of Physics: A Calculus-Based Text
- Please solve all the questions correctly please. Thank you!!arrow_forwardPlease solve this problem correctly please and be sure to provide explanation on each step so I can understand what's been done thank you. (preferrably type out everything)arrow_forwardUse a calculation to determine how far the fishing boat is from the water level .Determine distance Yarrow_forward
- No chatgpt pls will upvotearrow_forward2. 1. Tube Rating Charts Name: Directions: For the given information state if the technique is safe or unsafe and why. 60 Hertz Stator Operation Effective Focal Spot Size- 0.6 mm Peak Kilovolts MA 2 150 140 130 120 110 100 90 80 70 2501 60 50 40 30 .01 .02 .04.06 .1 .2 .4.6 1 8 10 Maximum Exposure Time In Seconds Is an exposure of 80 kVp, 0.1 second and 200 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above? Is an exposure of 100 kVp, 0.9 second and 150 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above?arrow_forwardQ: You have a CO2 laser resonator (λ = 10.6 μm). It has two curved mirrors with R₁=10m, R2= 8m, and mirror separation /= 5m. Find: R2-10 m tl Z-O 12 R1-8 m 1. Confocal parameter. b= 21w2/2 =√1 (R1-1)(R2-1)(R1+R2-21)/R1+R2-21) 2. Beam waist at t₁ & t2- 3. Waist radius (wo). 4. 5. The radius of the laser beam outside the resonator and about 0.5m from R₂- Divergence angle. 6. Radius of curvature for phase front on the mirrors R₁ & R2-arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning





