Experiments were conducted to study the
Initial concentrations and rates of reaction are given here.
Experiment | Initial Concentration |
[NO] (mol/L)
[H2] (mol/L)
N2 (mol/L min)
Consider the following questions:
(a) Determine the order for each of the reactants, NO and H2, from the data given and show your reasoning.
(b) Write the overall rate law for the reaction.
(c) Calculate the value of the rate constant, k, for the reaction. Include units.
(d) For experiment 2, calculate the concentration of NO remaining when exactly one-half of the original amount of H2 had been consumed.
(e) The following sequence of elementary steps is a proposed mechanism for the reaction.
Step 1:
Step 2:
Step 3:
Based on the data presented, which of these is the rate determining step? Show that the mechanism is consistent with the observed rate law for the reaction and the overall stoichiometry of the reaction.
Trending nowThis is a popular solution!
Chapter 12 Solutions
Chemistry by OpenStax (2015-05-04)
Additional Science Textbook Solutions
College Physics
Chemistry: Structure and Properties (2nd Edition)
Chemistry: The Central Science (14th Edition)
Chemistry: The Central Science (13th Edition)
Chemistry: A Molecular Approach
General, Organic, and Biological Chemistry (3rd Edition)
- Consider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardThe reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) was studied at 904 C, and the data in the table were collected. (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant for the reaction. (d) Find the rate of appearance of N2 at the instant when [NO] = 0.350 mol/L and [H] = 0.205 mol/L.arrow_forward
- The following statements relate to the reaction for the formation of HI: H2(g) + I2(g) 2 HI(g)Rate = k[H2][I2] Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. (a) The reaction must occur in a single step. (b) This is a second-order reaction overall. (c) Raising the temperature will cause the value of k to decrease. (d) Raising the temperature lowers the activation energy for this reaction. (e) If the concentrations of both reactants are doubled, the rate will double. (f) Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forwardOzone, O3, in the Earths upper atmosphere decomposes according to the equation 2 O3(g) 3 O2(g) The mechanism of the reaction is thought to proceed through an initial fast, reversible step followed by a slow, second step. Step 1: Fast, reversible O3(g) O2(g) + O(g) Step 2: Slow O3(g) + O(g) 2 O2(g) (a) Which of the steps is rate-determining? (b) Write the rate equation for the rate-determining steparrow_forwardThe following statements relate to the reaction for the formation of HI: H2(g) + I2(g) -* 2 HI(g) Rate = it[HJ [I2J Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. The reaction must occur in a single step. This is a second-order reaction overall. Raising the temperature will cause the value of k to decrease. Raising the temperature lowers the activation energy' for this reaction. If the concentrations of both reactants are doubled, the rate will double. Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forward
- Give at least two physical properties that might be used to determine the rate of a reaction.arrow_forwardIodomethane (CH3I) is a commonly used reagent in organic chemistry. When used properly, this reagent allows chemists to introduce methyl groups in many different useful applications. The chemical does pose a risk as a carcinogen, possibly owing to iodomethanes ability to react with portions of the DNA strand (if they were to come in contact). Consider the following hypothetical initial rates data: [DNA]0 ( mol/L) [CH3I]0 ( mol/L) Initial Rate (mol/Ls) 0.100 0.100 3.20 104 0.100 0.200 6.40 104 0.200 0.200 1.28 103 Which of the following could be a possible mechanism to explain the initial rate data? MechanismIDNA+CH3IDNACH3++IMechanismIICH3ICH3++ISlowDNA+CH3+DNACH3+Fastarrow_forwardConsider the decomposition reaction 2X2Y+ZThe following graph shows the change in concentration with respect to time for the reaction. What does each of the curves labeled 1, 2, and 3 represent?arrow_forward
- For the reaction of crystal violet with NaOH(aq), the measured rate of reaction is 1.27 106 mol L1 s1 when the concentration of crystal violet cation is 4.13 105 mol/L. (a) Estimate how long it will take for the concentration of crystal violet to drop from 4.30 105 mol/L to 3.96 105 mol/L. (b) Could you use the same method to make an accurate estimate of how long it would take for the concentration of crystal violet to drop from 4.30 105 mol/L to 0.43 105 mol/L? Explain why or why not.arrow_forwardTable 11-2 illustrates how the average rate of a reaction decreases with time. Why does the average rate decrease with time? How does the instantaneous rate of a reaction depend on time? Why are initial rates used by convention?arrow_forwardExperiments show that the reaction of nitrogen dioxide with fluorine, 2 NO2(g) + F2(g) —* 2 FNO2(g) has the rate law Rate = *[NO2][FJ The reaction is thought to occur in two steps. Step 1: NO2(g) + F,(g) —* FNO,(g) + F(g) Step 2: NO2(g) + F(g) — FNO2(g) Show that the sum of this sequence of reactions gives the balanced equation for the overall reaction. Which step is rate determining?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning