Concept explainers
(a)
Draw the influence lines for the reactions
moment at E.
(a)
Explanation of Solution
Calculation:
Influence line for reaction
Consider the portion AC
Apply a 1 kip unit moving load at a distance of
Sketch the free body diagram of beam as shown in Figure 1.
Refer Figure 1.
Consider clockwise moment as negative and anticlockwise moment as positive.
Find the equation support reaction
Take moment about point C from A.
Consider the portion CG
Apply a 1 kip unit moving load at a distance of
Sketch the free body diagram of beam as shown in Figure 2.
Refer Figure 2.
Find the equation support reaction
Take moment about point B from A.
Thus, the equations of the influence line for
Find the value of influence line ordinate of
Points | x | |
A | 0 | 1.5 |
4 | 1 | |
C | 12 | 0 |
D | 16 | 0 |
E | 20 | 0 |
F | 24 | 0 |
G | 28 | 0 |
Draw the influence lines for
Influence line for reaction
Consider the portion AC
Refer Figure 1.
Find the equation support reaction
The moment at F from G is zero.
Take moment about point C from A.
Consider the portion CG
Apply a 1 kip unit moving load at a distance of
Refer Figure 2.
Find the equation support reaction
The moment at F from G is zero.
Take moment about point C from A.
Thus, the equations of the influence line for
Find the value of influence line ordinate of
Points | x | |
A | 0 | ‑0.75 |
4 | 0 | |
C | 12 | 1.5 |
D | 16 | 1 |
E | 20 | 0.5 |
F | 24 | 0 |
G | 28 | ‑0.5 |
Draw the influence lines for
Influence line for reaction
Consider the portion AC
Refer Figure 1.
Find the equation support reaction
Consider vertical equilibrium equation.
Consider the portion CG
Apply a 1 kip unit moving load at a distance of
Refer Figure 2.
Find the equation support reaction
Consider vertical equilibrium equation.
Thus, the equations of the influence line for
Find the value of influence line ordinate of
Points | x | |
A | 0 | 0.25 |
4 | 0 | |
C | 12 | ‑0.5 |
D | 16 | 0 |
E | 20 | 0.5 |
F | 24 | 1 |
G | 28 | 1.5 |
Draw the influence lines for
Influence line for the shear at section E:
Consider portion AC
Find the equation of shear and moment at E for portion AC.
Apply a 1 kip in the portion AC from A.
Sketch the free body diagram of the section EG as shown in Figure 6.
Find the equation of shear at E of portion AC.
Find the equation of moment at E of portion AC.
Consider portion CE
Find the equation of shear and moment at E for portion CE.
Apply a 1 kip in the portion CE from A.
Sketch the free body diagram of the section EG as shown in Figure 7.
Refer Figure 7.
Find the equation of shear at E of portion CE.
Find the equation of moment at E of portion CE.
Consider portion EG
Find the equation of shear and moment at E for portion EG.
Apply a 1 kip in the portion EG from A.
Sketch the free body diagram of the section AE as shown in Figure 8.
Refer Figure 8.
Find the equation of shear at E of portion EG.
Find the equation of moment at E of portion EG.
Thus, the equations of the influence line for
Find the value of influence line ordinate of shear force at E various points of x using the Equations (7), (8), and (9) and summarize the value as in Table 4.
Points | x | |
A | 0 | ‑0.25 |
4 | 0 | |
12 | 0.5 | |
D | 16 | 0 |
20 | ‑0.5 | |
20 | ‑0.5 | |
F | 24 | 0 |
G | 28 | ‑0.5 |
Draw the influence lines for the shear force at point B using Table 4 as shown in Figure 9.
Find the value of influence line ordinate of moment at
Points | x | |
A | 0 | 1 |
4 | 0 | |
12 | ‑2 | |
D | 16 | 0 |
20 | 2 | |
F | 24 | 0 |
G | 28 | ‑2 |
Sketch the influence lines for the moment at point E using Table 5 as shown in Figure 10.
(b)
Determine the maximum positive and negative values of the reactions.
(b)
Explanation of Solution
Given Information:
The uniform load acts on the beam (w) is 1.2 kips/ft
Calculation:
Refer Figure 3.
Determine the maximum positive value of the reaction
Therefore, the maximum positive value of the reaction
Determine the maximum negative value of the reaction
Therefore, the maximum negative value of the reaction
Refer Figure 4.
Determine the maximum positive value of the reaction
Therefore, the maximum positive value of the reaction
Determine the maximum negative value of the reaction
Therefore, the maximum negative value of the reaction
Refer Figure 5.
Determine the maximum positive value of the reaction
Therefore, the maximum positive value of the reaction
Determine the maximum negative value of the reaction
Therefore, the maximum negative value of the reaction
Want to see more full solutions like this?
Chapter 12 Solutions
Fundamentals Of Structural Analysis:
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning