Concept explainers
Draw the influence lines for the reaction at A.
Draw the influence lines for the shear and moment at points B and C.

Explanation of Solution
Determine the general expression of reaction
Apply a 1 kip unit load between supports A and D at a distance of x from left end A.
Sketch the free body diagram of beam as shown in Figure 1.
Refer Figure 1.
Find the equation of support reaction at A using equilibrium equation:
Take moment about point D.
Consider moment equilibrium at point D.
Consider clockwise moment as negative and anticlockwise moment as positive
Sum of moment at point D is zero.
Find the value of influence line ordinate at
Substitute 0 for x in Equation (1).
Similarly calculate the influence line ordinate of reaction
x | |
0 | 1 |
5 | |
10 | |
20 | 0 |
Draw the influence line diagram for the vertical reactions at support A using Table 1 as shown in Figure 2.
Find the equation of shear force at B of portion AB
Sketch the free body diagram of the section AB as shown in Figure 3.
Refer Figure 3.
Apply vertical equilibrium equation of forces.
Consider upward force as positive
Find the equation of shear force at B of portion BD
Sketch the free body diagram of the section BD as shown in Figure 4.
Refer Figure 4.
Apply vertical equilibrium equation of forces.
Consider upward force as positive
Thus, the equations of the influence line for
Find the value of influence line ordinate of shear force at B various points of x using the Equations (2) and (3) and summarize the value as in Table 2.
x | |
0 | 0 |
10 | |
20 | 0 |
Draw the influence lines for the shear force at point B using Table 2 as shown in Figure 5.
Refer Figure 3.
Consider clockwise moment as negative and anticlockwise moment as positive.
Find the equation of moment at B of portion AB
Refer Figure 4.
Consider clockwise moment as negative and anticlockwise moment as positive.
Find the equation of moment at B of portion BD
Thus, the equations of the influence line for
Find the value of influence line ordinate of moment at B various points of x using the Equations (4) and (5) and summarize the value as in Table 3.
x | |
0 | 0 |
20 | 0 |
Draw the influence lines for the moment at point B using Table 3 as shown in Figure 6.
Find the equation of shear force at C of portion AC
Sketch the free body diagram of the section AC as shown in Figure 7.
Refer Figure 7.
Apply vertical equilibrium equation of forces.
Consider upward force as positive
Find the equation of shear force at C of portion CD
Sketch the free body diagram of the section CD as shown in Figure 8.
Refer Figure 8.
Apply equilibrium equation of forces.
Consider upward force as positive
Thus, the equations of the influence line for
Find the value of influence line ordinate of shear force at C various points of x using the Equations (6) and (7) and summarize the value as in Table 4.
x | |
0 | 0 |
5 | |
20 | 0 |
Draw the influence lines for the shear force at point C using Table 4 as shown in Figure 9.
Refer Figure 7.
Consider clockwise moment as negative and anticlockwise moment as positive.
Find the equation of moment at C of portion AC
Refer Figure 4.
Consider clockwise moment as negative and anticlockwise moment as positive.
Find the equation of moment at C of portion CD
Thus, the equations of the influence line for
Find the value of influence line ordinate of moment at C various points of x using the Equations (8) and (9) and summarize the value as in Table 5.
x | |
0 | 0 |
5 | |
10 | 5 |
20 | 0 |
Draw the influence lines for the moment at point C using Table 5 as shown in Figure 10.
Want to see more full solutions like this?
Chapter 12 Solutions
Fundamentals Of Structural Analysis:
- In this question, we are going to learn about the gravity model. As discussed in class, an alternative and frequent way to model the demand is doing it in 4 steps: Generation/Attraction, Distribution, Mode choice, and Route choice. In the generation/attraction step, we estimate the number of trips that depart and arrive from each zone, in a similar way as we studied generation in the lectures. The idea of the distribution step is, taking the generation and attraction numbers as known, estimate the number of people going from each zone to each zone. Let's be precise: Consider that you know O₂ for every zone i, representing the number of users that have i as their origin. Similarly, you know Dj, representing the number of users that have j as their destination. We want to estimate Mij, i.e., the number of users going from i to j. The matrix Marrow_forward= a2+ Assume an origin is connected to a destination with two routes. Assume the travel time of each route has a linear relationship with the traffic flow on the route (t₁ = α₁ + b₁x₁ ; t₂ b2x2). Determine under what condition (e.g. a relationship among the parameters of the performance functions) tolling cannot reduce the total travel time of the two routes.arrow_forwardA suburb has 2000 households. The council hired two transport consulting companies to predict the generated work trips from within the suburb after building a few residential complexes. The new buildings will increase the number of households to 2500. The following information is provided: Type Household Size Household Count Projected Household Count 1 1 500 800 2 2 800 900 3 3 700 800 Each company has conducted different travel surveys from 200 households based on different sampling methods. The work trip generation models are as follows: Company A: T₁ = -0.1 + 0.8 (household size) Company B: T₁ = 0.1 + 0.5 (household size) a. If the total number of current work trips is 2700, which model should be used for prediction? Why? b. What are the possible reasons for the difference between the two models? C. As a transport engineer working for council, propose a new and more accurate model based on Companies A and B models. d. Based on the new model in Part C, predict the number of work…arrow_forward
- Consider the following static route choice problem where 110 vehicles travel from point A to point B. The corresponding travel time (in minutes) of each link is as follows: t₁ = x1; t₂ = x2 + 20; t3 = x3 + 10; t₁ = 3x4 where x; denotes the number of vehicles that choose link i. Find the number of vehicles that travel on each link when a. The user equilibrium condition (UE) is satisfied, where vehicles select the route with the minimum travel time; and b. The system optimum condition (SO) is satisfied, where the total travel time is minimised. C. Report the total delay savings when satisfying SO instead of UE. 2 A B 3 4arrow_forwardIt is known that 5000 automobile trips are generated in a large residential area from 12:00 PM to 1:00 PM on Saturdays for shopping purposes. Four major shopping centres have the following characteristics: Shopping Centre 1 2 3 4 Distance from residential area (km) 4 9 8 14 Commercial floor space (thousands of m²) 20 15 30 60 Using a Logit model (with logit parameter equal to 1), the following utility function is estimated for the residents' choice of shopping destination: U = -0.283 X1 + 0.172 X2 where X1 is distance from residential area (km) X2 is commercial floor space (thousands of m²) Determine the number of shopping trips to each of the four shopping centres. Are the signs of the parameter coefficients reasonable? Discuss.arrow_forwardTITLE: DESIGN OF SINGLY REINFORCED RECTANGULAR BEAMS USING STRENGTH DESIGN METHOD. PROBLEM: Design a rectangular concrete beam section for positive moment and negative moment for the loads (unfactored) and p values given. Show sketch of cross section, including bar size, arrangement and spacing. Use concrete weight = 236 kN/m³, fy = 414 MPa, f`c = 27.6 MPa, p = 0.5Pmax concrete cover = 40 mm, tie bar = 10 mm Ø.Deadload : w₁₁ = 90 kN/m Live Load: WLL = 40 kN/m and PLL = 3kN. Assume beam weight equal to 8 kN/m. PLL W = WDL + WLL +Selfweight of beam 3.5m 7 m 3.5m Use p =Pmax (SUPPORT ONLY) COMPUTATION: Required: 1. Factored Load 2. Required moment Mu, using NSCP 2015 load combination. a. at the left support b. at the mid-span c. at the right support 3. Design a singly reinforced rectangular beam: a. at the left support b. at the mid-span c. at the right support Use b=0.54d and 32-mm diameter bar. 4. Check adequacy: a. at the left support b. at the mid-span c. at the right support SKETCHarrow_forward
- For the truss and loading shown given that thedistances AD=DG=12, BE=EH=12, and GH=12, determine the forcesof each memberarrow_forwardس 1 تم أخذ قرار استثماري من قبل احدى الشركات المتخصصة في مجال البيئة والطاقة بالدخول في مشروع انشاء ابنية مستدامة وثبتت الشركة رغبتها بالحصول على عائد سنوي ثابت مقداره 50,000 دولار لمدة ثمانية سنوات بالاضافة الى عائد يغطي سداد ايجار مقر الشركة مقداره 35,000 دولار كل اربع سنوات, فاذا كانت المصاريف التشغيلية السنوية 20,000 دولار و نسبة الفائدة 10% % ماهو المبلغ الواجب استثماره من قبل الشركة لغرض تحقيق هذه العوائد؟ س2/ احسب القيمة المستقبلية المكافئة ( Future worth value ) للمشروع الاستثماري المبينة بياناته الاقتصادية في ادناه رأس المال Investment Cost الفقرة تكاليف التشغيل السنوية Annual Operating Cost العوائد السنوية Annual Revenue عمر المشروع Useful life Interest rate نسبة الفائدة Inflation rate نسبة التضخم المبلغ ($) 800,000 30,000 150,000 10 years 12% 4%arrow_forwardResuelve el problema unoarrow_forward
- A lagoon with volume 1,300 m3 has been receiving a steady flow of a non-conservative waste (rate constant= 0.19/day) at a rate of 80 m3/day for a long enough time to assume that steady-state conditions apply. The waste entering the lagoon has a concentration of 12 mg/L. A. What would be the concentration of pollutant in the effluent leaving the lagoon? B. If the input waste concentration suddenly increased to 110 mg/L, what would the concentration in the effluent be 8 days later?arrow_forwardI dont know how to solvearrow_forwardThe BOD of a river just below a sewage outfall is 40 mg/L. At this point, the DO is at the saturated value of 9.8 mg/L. The deoxygenation rate coefficient is 0.22/day, and the reaeration rate coefficient is 0.9/day. The river is flowing at 10 miles/day. There are no other sources of BOD in the river. A. Find the critical distance downstream at which DO is at a minimum. B. Find the minimum DO.arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning





