
University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 12, Problem 58P
The magnetic field in the core of an air-filled solenoid is 1.50 T, By how much will this magnetic field decrease if the ail is pumped out of the core while the current is held constant?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
4.) The diagram shows the electric field lines of a positively charged conducting sphere of
radius R and charge Q.
A
B
Points A and B are located on the same field line.
A proton is placed at A and released from rest. The magnitude of the work done by the electric field in
moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of
the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere.
(a) Explain why the electric potential decreases from A to B. [2]
(b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the
sphere.
R
[2]
(c(i)) Calculate the electric potential difference between points A and B. [1]
(c(ii)) Determine the charge Q of the sphere. [2]
(d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists
developed a common terminology to describe different types of fields. [1]
3.) The graph shows how current I varies with potential difference V across a component X.
904
80-
70-
60-
50-
I/MA
40-
30-
20-
10-
0+
0
0.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VIV
Component X and a cell of negligible internal resistance are placed in a circuit.
A variable resistor R is connected in series with component X. The ammeter reads 20mA.
4.0V
4.0V
Component X and the cell are now placed in a potential divider circuit.
(a) Outline why component X is considered non-ohmic. [1]
(b(i)) Determine the resistance of the variable resistor. [3]
(b(ii)) Calculate the power dissipated in the circuit. [1]
(c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider
is moved from Q to P. [1]
(c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider
arrangement over the arrangement in (b).
1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A.
The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N.
(a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2]
(b) Calculate the current in wire Q. [2]
(c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown.
wire P
wire R
wire Q
0.05 m
0.05 m
The net magnetic force on wire Q is now zero.
(c.i) State the direction of the current in R, relative to the current in P.[1]
(c.ii) Deduce the current in R. [2]
Chapter 12 Solutions
University Physics Volume 2
Ch. 12 - Check Your Understanding Using Example 12.1, at...Ch. 12 - Check Your Understanding The wire loop forms a...Ch. 12 - 12.3 Check Your Understanding Using Example 12.3,...Ch. 12 - 12.4 Check Your Understanding Two wires, both...Ch. 12 - Check Your Understanding Using Example 12.5, at...Ch. 12 - Check Your Understanding Consider using Ampere’s...Ch. 12 - 12.7 Check Your Understanding What is the ratio of...Ch. 12 - Check your Understanding Repeat the calculations...Ch. 12 - For calculating magnetic fields, what are the...Ch. 12 - Describe the magnetic field due to the current in...
Ch. 12 - How can you decide if a wire is infinite?Ch. 12 - Identical currents are carried in two circular...Ch. 12 - How would you orient two long, straight, current...Ch. 12 - Compare and contrast the electric field of an...Ch. 12 - Is B constant in magnitude for points that lie on...Ch. 12 - Is the magnetic field of a current loop uniform?Ch. 12 - What happens to the length of a suspended spring...Ch. 12 - Two concentric circular wines with different...Ch. 12 - Is Ampere’s law valid for all closed paths? Why...Ch. 12 - Is the magnetic field inside a toroid completely...Ch. 12 - Explain why B=0 inside a long, hollow copper pipe...Ch. 12 - A diamagnetic material is brought dose to a...Ch. 12 - If you cut a bar magnet into two pieces, will you...Ch. 12 - A 10-A current flows through the wire shown. What...Ch. 12 - Ten amps flow through a square loop where each...Ch. 12 - What is the magnetic field at P due to the current...Ch. 12 - The accompanying figure shows a current loop...Ch. 12 - Find the magnetic field at the center C of the...Ch. 12 - Two long wires, one of which has a semicircular...Ch. 12 - A typical currant in a lightning bolt is 104 A....Ch. 12 - The magnitude of the magnetic field 50 cm from a...Ch. 12 - A transmission line strung 7.0 m above the ground...Ch. 12 - A long, straight, horizontal wire carries a...Ch. 12 - The two long, parallel wires shown in the...Ch. 12 - The accompanying figure shows two long, straight,...Ch. 12 - Repeat the calculations of the preceding problem...Ch. 12 - Consider the area between the wires of the...Ch. 12 - Two long, straight wires are parallel and 25 cm...Ch. 12 - Two long, straight wires are parallel and 10 cm...Ch. 12 - Two long, parallel wires are hung by cords of...Ch. 12 - A circuit with current I has two long parallel...Ch. 12 - The infinite, straight wire shown in the...Ch. 12 - When the current through a circular loop is 6.0 A,...Ch. 12 - How many turns must be wound on a flat, circular...Ch. 12 - A flat, circular loop has 20 turns. The radius of...Ch. 12 - A circular loop of radius R carries a current I....Ch. 12 - Two flat, circular coils, each with a radius R and...Ch. 12 - For the coils in the preceding problem, what is...Ch. 12 - A current 1 flows around the rectangular loop...Ch. 12 - Evaluate BdI for each of the cases shown in the...Ch. 12 - The coil whose lengthwise cross section is shown...Ch. 12 - A superconducting wire of diameter 0.25 cm carries...Ch. 12 - A long, straight wire of radius R caries a current...Ch. 12 - The accompanying figure shows a cross-section of a...Ch. 12 - A long, solid, cylindrical conductor of radius 3.0...Ch. 12 - A portion of a long, cylindrical coaxial cable is...Ch. 12 - A solenoid is wound with 2000 turns pet meter....Ch. 12 - A solenoid has 12 turns per centimeter. What...Ch. 12 - If a current is 2.0 A, bow many turns per...Ch. 12 - A solenoid is 40 cm long, has a diameter of 3.0...Ch. 12 - Determine the magnetic field on the central axis...Ch. 12 - By how much is the approximation B=0nI in error at...Ch. 12 - A solenoid with 25 turns per centimeter carries a...Ch. 12 - A toroid has 250 trims of wire and carries a...Ch. 12 - A toroid with a square cross section 3.0cm3.0cm...Ch. 12 - The magnetic field in the core of an air-filled...Ch. 12 - A solenoid has a ferromagnetic core, n = 1000...Ch. 12 - A 20-A current flows through a solenoid with 2000...Ch. 12 - The magnetic dipole moment of the iron atom is...Ch. 12 - Suppose you wish to produce 1.2-T magnetic field...Ch. 12 - A current of 1.5 A flows through the windings of a...Ch. 12 - A solenoid with an iron core is 25 cm long and is...Ch. 12 - Three long, straight, parallel wires, all carrying...Ch. 12 - A current I flows around a wire bent into the...Ch. 12 - The accompanying figure shows a long, straight...Ch. 12 - Current flows along a thin, infinite sheet as...Ch. 12 - (a) Use the result of the previous problem to...Ch. 12 - We often assume that the magnetic field is uniform...Ch. 12 - How is the percentage change in the strength of...Ch. 12 - Show that the expression for the magnetic field of...Ch. 12 - A toroid with an inner radius of 20 cm and an...Ch. 12 - A wire element has dI,IdI=JAdl=Jdv , where A and...Ch. 12 - A reasonably uniform magnetic field over a limited...Ch. 12 - A charge of 4.0C .s distributed uniformly around a...Ch. 12 - A thin, nonconducting disk of radius R is free to...Ch. 12 - Consider the disk in the previous problem....Ch. 12 - Consider the axial magnetic field...Ch. 12 - The current density in the long, cylindrical wire...Ch. 12 - A long, straight, cylindrical conductor contains a...Ch. 12 - Between the two ends of a horseshoe magnet the...Ch. 12 - Show that the magnetic field of a thin wire and...Ch. 12 - An Ampere loop is chosen as shown by dashed lines...Ch. 12 - , A ray long, thick, cylindrical wire of radius R...Ch. 12 - A very long, cylindrical wire of radius a has a...Ch. 12 - Magnetic field inside a torus. Consider a torus of...Ch. 12 - Two long coaxial copper tubes, each of length L,...Ch. 12 - The accompanying figure shows a flat, infinitely...Ch. 12 - A hypothetical current flowing in the z-direction...Ch. 12 - A nonconducting hard rubber circular disk of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
17. Anthropologists are interested in locating areas in Africa where fossils 4-8 million years old might be fou...
Campbell Biology: Concepts & Connections (9th Edition)
Under what conditions would you expect microorganisms to grow as a result of denitrification?
Brock Biology of Microorganisms (15th Edition)
14. An experienced goldfish breeder receives two unusual male goldfish. One is black rather than gold, and the ...
Genetic Analysis: An Integrated Approach (3rd Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Using the forked-line, or branch diagram, method, determine the genotypic and phenotypic ratios of these trihyb...
Concepts of Genetics (12th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- A rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forwardDescribe the development of rational choice theory in sociology. Please includearrow_forward
- A-E pleasearrow_forwardA 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forwardA-E pleasearrow_forward
- Three moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression, 1900 J of work is done on the gas. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Entropy change in a free expansion. Part A What is the change of entropy of the gas? ΤΕ ΑΣΦ AS = Submit Request Answer J/Karrow_forward5.97 Block A, with weight 3w, slides down an inclined plane S of slope angle 36.9° at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall (Fig. P5.97). (a) Draw a diagram of all the forces acting on block A. (b) If the coefficient of kinetic friction is the same between A and B and between S and A, determine its value. Figure P5.97 B A S 36.9°arrow_forwardPlease take your time and solve each part correctly please. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College