![Fundamentals of Structural Analysis](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_largeCoverImage.gif)
Concept explainers
(a)
Draw the influence line for the positive moment at section B using moment distribution method.
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Influence line for the moment at support B.
Influence lines will be constructed by placing the unit load at every 20 ft interval from A along the span of the beam. The points are indicated by the circled numbers.
To establish the influence line ordinate at the left end (point 1), the unit load is placed on the beam directly over support A. Since the entire load passes directly into the support, the beam is unstressed. Therefore,
Similarly, if the unit load is moved at C and D,
Case 1:
Apply unit load at 20 ft from A. (point 2).
Draw the beam with points of applying unit load at B (point 2) as in Figure 1.
Refer Figure 1.
Find the fixed end moment at each end of the member CD as follows;
Find the fixed end moment at each end of the member CA as follows;
Find the distribution factor.
Show the computation of distribution factor as in Table 1.
Joints | Member | Stiffness, K | ||
C | CA | |||
CD |
Show the moment distribution computations as in Table 2.
Joint | A | C | D | ||
Member | AC | CA | CD | DC | |
DF | 0.5 | 0.5 | |||
FEM | ‑8.89 | 4.44 | 0 | 0 | |
Released moment | +8.89 | 0 | 0 | 0 | |
COM | 0 | 4.44 | 0 | ||
Total | 0 | 8.88 | 0 | 0 | |
DEM | ‑4.44 | ‑4.44 | |||
COM | |||||
Final | 0 | 4.44 | ‑4.44 | 0 |
Find the reaction at A using section AC.
Draw the free body diagram of section AC as in Figure 2.
Refer Figure 1.
Find the reaction at A.
Consider moment at C
Find the moment at B.
Consider moment at B
Thus, the influence line ordinate of moment at B when 1 kip applied at B is 11.86.
Case 2:
Apply unit load at 20 ft from C. (point 5).
Draw the beam with points of applying at point 5 as in Figure 3.
Refer Figure 3.
Find the fixed end moment at each end of the member CD as follows;
Find the fixed end moment at each end of the member DC as follows;
Show the moment distribution computations as in Table 3.
Joint | A | C | D | ||
Member | AC | CA | CD | DC | |
DF | 0.5 | 0.5 | |||
FEM | 0 | 0 | ‑8.89 | 4.440 | |
Released moment | 0 | 0 | 0 | ‑4.44 | |
COM | 0 | 0 | ‑2.22 | ||
Total | 0 | 0 | ‑11.11 | 0 | |
DEM | +5.56 | +5.56 | |||
COM | |||||
Final | 0 | 5.56 | ‑5.56 | 0 |
Find the reaction at A using section AC.
Draw the free body diagram of section AC as in Figure 4.
Refer Figure 4.
Find the reaction at A.
Consider moment at C
Find the moment at B.
Consider moment at B
Thus, the influence line ordinate of moment at B when 1 kip applied at point 5 is ‑1.876.
Similarly calculate the influence line ordinate by applying the points 3 and 5 and tabulate the values as in Table 4.
Apply 1 k at point | Influence line ordinate of moment at B. |
1 | 0 |
2 | 11.86 |
4 | 0 |
5 | ‑1.876 |
6 | ‑1.876 |
7 | 0 |
Draw the influence line diagram of influence line ordinate of moment at B using Table 4 as in Figure 5.
(b)
Find the maximum moment at B for the given loading condition.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 53P
The maximum moment at B for the given loading condition is
Explanation of Solution
Consider the uniformly distributed load of 2 kips/ft act on the span AC only and the concentrated live load of 20 kips act at B.
Draw the free body diagram of the beam for the given loading as in Figure 6.
Refer Figure 6.
Find the fixed end moment at each end of the member AC as follows;
Find the fixed end moment at each end of the member CA as follows;
Show the moment distribution computations as in Table 5.
Joint | A | C | D | ||
Member | AC | CA | CD | DC | |
DF | 0.5 | 0.5 | |||
FEM | ‑777.78 | 688.89 | 0 | 0 | |
Released moment | +777.78 | 00 | 0 | 0 | |
COM | 388.89 | ||||
Total | 0 | 1,077.78 | 0 | 0 | |
DEM | ‑538.89 | ‑538.89 | |||
COM | |||||
Final | 0 | 538.89 | ‑538.89 | 0 |
Find the reaction at A using section AC.
Draw the free body diagram of section AC as in Figure 7.
Refer Figure 7.
Find the reaction at A.
Consider moment at C
Find the moment at B.
Consider moment at B
Therefore, the maximum moment at B for the given loading condition is
(c)
Find the maximum moment at B due to wheel loads using moment distribution method.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 53P
The maximum moment at B due to wheel loads using moment distribution method is
Explanation of Solution
The maximum moment at B is produced when wheel load is placed at B.
Draw the free body diagram of the beam for the wheel loading as in Figure 8.
Refer Figure 8.
Find the fixed end moment at each end of the member AC as follows;
Find the fixed end moment at each end of the member CA as follows;
Show the moment distribution computations as in Table 6.
Joint | A | C | D | ||
Member | AC | CA | CD | DC | |
DF | 0.5 | 0.5 | |||
FEM | ‑147.5 | 107.5 | 0 | 0 | |
Released moment | +147.5 | 0 | 0 | 0 | |
COM | 73.75 | ||||
Total | 0 | 181.25 | 0 | 0 | |
DEM | ‑90.63 | 90.63 | |||
COM | |||||
Final | 0 | ‑90.63 | 90.63 | 0 |
Find the reaction at A using section AC.
Draw the free body diagram of section AC as in Figure 9.
Refer Figure 7.
Find the reaction at A.
Consider moment at C
Find the moment at B.
Consider moment at B
Therefore, the maximum moment at B for the given loading condition is
Want to see more full solutions like this?
Chapter 12 Solutions
Fundamentals of Structural Analysis
- Four container contain the same solution of sodium chloride mixture. The containers are alldifferently shaped but have the same height of fluid relative to the base. At a distance of 20cmabove the base, in which container would the pressure be the highest? Explain.arrow_forward2–6. The square deforms into the position shown by the dashed lines. Determine the shear strain at each of its corners, A, B, C, and D, relative to the x, y axes. Side D′B′ remains horizontal.arrow_forwardThe force P applied at joint D of the square frame causes the frame to sway and form the dashed rhombus. Determine the average normal strain developed in wire AC. Assume the three rods are rigid.arrow_forward
- 4. Draw a free body diagram of the loading and forces. Solve for the reaction A at the wall support. Check your answer using the summation of forces. 10k A w=2 k/ft 40ft 10ft 5karrow_forward4. Draw a free body diagram of the loading and forces. Solve for the reaction A at the wall support. Check your answer using the summation of forces. 10k A w=2 k/ft 40ft 10ft 5karrow_forwardA reinforced concrete beam with b=300mm, h=670mm,and d=600 mm, having a span of 7.3 m, can be considered as a fully fixed at the left support and simply supported at the right end. It is reinforced for positive bending with 8-16 and for negative bending with 4816 plus 418. Calculate the collapse load using the plastic hinge method. (20%)arrow_forward
- A reinforced concrete beam with b=300mm, h=670mm,and d=600 mm, having a span of 7.3 m, can be considered as a fully fixed at the left support and simply supported at the right end. It is reinforced for positive bending with 8-16 and for negative bending with 4816 plus 418. Calculate the collapse load using the plastic hinge method.arrow_forwardCalculate the collapse load (P) for the two fixed ended beam shown below. Use equilibrium method P 2 m 4 m L=6 marrow_forwardPlease use virtual work/ force method as I am struggling with that particular concept.arrow_forward
- The anchor from Part A can also fail in shear in the circular head, as shown (Figure 3). What is the minimum thickness tt required for the head to support the allowed load PallowPallow = 15 kNkN if the material fails in shear at τfailτfail = 30 MPaMPa ? Use a factor of safety F.S.F.S. = 2.2.arrow_forwardFind three sites on the www related to reinforced concrete (other than thoselinked to the Syllabus). For each site, provide a written description of the sitecontent and the site’s URL.arrow_forwardVisit the course web page on Canvas. Find the document where the advantagesand disadvantages of reinforced concrete are listed. Provide at least three additionaladvantages and three additional disadvantages. Justify your answer.arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
![Text book image](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)