
Concept explainers
(a)
Draw the influence lines for the reactions
moment at E.
(a)

Explanation of Solution
Calculation:
Influence line for reaction
Consider the portion AC
Apply a 1 kip unit moving load at a distance of
Sketch the free body diagram of beam as shown in Figure 1.
Refer Figure 1.
Consider clockwise moment as negative and anticlockwise moment as positive.
Find the equation support reaction
Take moment about point C from A.
Consider the portion CG
Apply a 1 kip unit moving load at a distance of
Sketch the free body diagram of beam as shown in Figure 2.
Refer Figure 2.
Find the equation support reaction
Take moment about point B from A.
Thus, the equations of the influence line for
Find the value of influence line ordinate of
Points | x | |
A | 0 | 1.5 |
4 | 1 | |
C | 12 | 0 |
D | 16 | 0 |
E | 20 | 0 |
F | 24 | 0 |
G | 28 | 0 |
Draw the influence lines for
Influence line for reaction
Consider the portion AC
Refer Figure 1.
Find the equation support reaction
The moment at F from G is zero.
Take moment about point C from A.
Consider the portion CG
Apply a 1 kip unit moving load at a distance of
Refer Figure 2.
Find the equation support reaction
The moment at F from G is zero.
Take moment about point C from A.
Thus, the equations of the influence line for
Find the value of influence line ordinate of
Points | x | |
A | 0 | ‑0.75 |
4 | 0 | |
C | 12 | 1.5 |
D | 16 | 1 |
E | 20 | 0.5 |
F | 24 | 0 |
G | 28 | ‑0.5 |
Draw the influence lines for
Influence line for reaction
Consider the portion AC
Refer Figure 1.
Find the equation support reaction
Consider vertical equilibrium equation.
Consider the portion CG
Apply a 1 kip unit moving load at a distance of
Refer Figure 2.
Find the equation support reaction
Consider vertical equilibrium equation.
Thus, the equations of the influence line for
Find the value of influence line ordinate of
Points | x | |
A | 0 | 0.25 |
4 | 0 | |
C | 12 | ‑0.5 |
D | 16 | 0 |
E | 20 | 0.5 |
F | 24 | 1 |
G | 28 | 1.5 |
Draw the influence lines for
Influence line for the shear at section E:
Consider portion AC
Find the equation of shear and moment at E for portion AC.
Apply a 1 kip in the portion AC from A.
Sketch the free body diagram of the section EG as shown in Figure 6.
Find the equation of shear at E of portion AC.
Find the equation of moment at E of portion AC.
Consider portion CE
Find the equation of shear and moment at E for portion CE.
Apply a 1 kip in the portion CE from A.
Sketch the free body diagram of the section EG as shown in Figure 7.
Refer Figure 7.
Find the equation of shear at E of portion CE.
Find the equation of moment at E of portion CE.
Consider portion EG
Find the equation of shear and moment at E for portion EG.
Apply a 1 kip in the portion EG from A.
Sketch the free body diagram of the section AE as shown in Figure 8.
Refer Figure 8.
Find the equation of shear at E of portion EG.
Find the equation of moment at E of portion EG.
Thus, the equations of the influence line for
Find the value of influence line ordinate of shear force at E various points of x using the Equations (7), (8), and (9) and summarize the value as in Table 4.
Points | x | |
A | 0 | ‑0.25 |
4 | 0 | |
12 | 0.5 | |
D | 16 | 0 |
20 | ‑0.5 | |
20 | ‑0.5 | |
F | 24 | 0 |
G | 28 | ‑0.5 |
Draw the influence lines for the shear force at point B using Table 4 as shown in Figure 9.
Find the value of influence line ordinate of moment at
Points | x | |
A | 0 | 1 |
4 | 0 | |
12 | ‑2 | |
D | 16 | 0 |
20 | 2 | |
F | 24 | 0 |
G | 28 | ‑2 |
Sketch the influence lines for the moment at point E using Table 5 as shown in Figure 10.
(b)
Determine the maximum positive and negative values of the reactions.
(b)

Explanation of Solution
Given Information:
The uniform load acts on the beam (w) is 1.2 kips/ft
Calculation:
Refer Figure 3.
Determine the maximum positive value of the reaction
Therefore, the maximum positive value of the reaction
Determine the maximum negative value of the reaction
Therefore, the maximum negative value of the reaction
Refer Figure 4.
Determine the maximum positive value of the reaction
Therefore, the maximum positive value of the reaction
Determine the maximum negative value of the reaction
Therefore, the maximum negative value of the reaction
Refer Figure 5.
Determine the maximum positive value of the reaction
Therefore, the maximum positive value of the reaction
Determine the maximum negative value of the reaction
Therefore, the maximum negative value of the reaction
Want to see more full solutions like this?
Chapter 12 Solutions
Fundamentals of Structural Analysis
- Text Book Problem 7.82 (page 261) Consider the total head-loss in the system forthis flow is 18.56 ft (head-losses in first and second pipe are 13.83 ft and 4.73 ftrespectively). Please show numerical values for EGL/HGL at the beginning/end/intermediatechange point. (Point distribution: elevation determination 5 points, EGL, HGL lines 4points).(I think we are just using the values provided for head losses to solve this problem)arrow_forwardCalculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the moment distribution method, and draw the Shear force diagram and Bending moment diagram for the beam shown. The beam is subjected to an UDL of w=65m. L=4.5m L1= 1.8m. Assume the support at C is pinned, and A and B are roller supports. E = 200GPa, I = 250x106 mm4.arrow_forwardCalculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the Slope deflection method. The beam is subjected to an UDL of w=65m. L=4.5m L1= 1.8m. Assume the support at C is pinned, and A and B are roller supports. E = 200GPa, I = 250x106 mm4.arrow_forward
- Thank you for your help if you would also provide the equations used .arrow_forwardThe sectors are divided as follows:top right = 1, top left = 2, middle = 3, bottom = 4.(a) Determine the distance yˉ to the centroid of the beam’s cross-sectional area.Solve the next questions by building a table. (Table format Answers) (b) Determine the second moment of area (moment of inertia) about the x′ axis. (c) Determine the second moment of area (moment of inertia) about the y-axis.arrow_forwardinstructions: make sure to follow the instructions and provide complete and detailed solution create/draw a beam with uniformly distributed load and concentrated load after, find the shear and moment equation and ensure to draw it's shear and moment diagram once done, write it's conclusion or observation 4:57 PMarrow_forward
- Solve for forces on pin C and Darrow_forwardBorrow pit soil is being used to fill an 900,00 yd3 of depression. The properties of borrowpit and in-place fill soils obtained from laboratory test results are as follows:• Borrow pit soil: bulk density 105 pcf, moisture content = 8%, and specific gravity = 2.65• In-place fill soil: dry unit weight =120 pcf, and moisture content = 16%(a) How many yd3 of borrow soil is required?(b) What water mass is needed to achieve 16% moisture in the fill soil?(c) What is the in-place density after a long rain?arrow_forwardsolve for dt/dx=f(t,x)=x+t^2arrow_forward
- Calculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the slope deflection method, draw the resulting shear force diagran and bending moment diagram. The beam is subjected to an UDL of w=65m. L=4.5m, L1= 1.8m. Assume the support at C is pinned, and A and B are roller supports. E = 200 GPa, I = 250x106 mm4.arrow_forwardProblem 2 (A is fixed and C is a pin) Find the reactions and A and C. 10 k- 6 ft 6 ft B A 2 k/ft 15 ftarrow_forward6. A lake with no outlet is fed by a river with a constant flow of 1200 ft3/s. Water evaporates from the surface at a constant rate of 13 ft3/s per square mile of surface area. The surface area varies with the depth h (in feet) as A (square miles) = 4.5 + 5.5h. What is the equilibrium depth of the lake? Below what river discharge (volume flow rate) will the lake dry up?arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning





