Geometric structure of a molecule should be defined. Geometric structures of four simple molecules should be drawn and the bond angles should be indicated. The main idea of valence shell electron pair repulsion theory should be explained. Using several examples, how VSEPR theory is applied to predict their geometric structure should be explained. Concept Introduction: In determine the shapes of molecules; the first step is to draw the Lewis structure. The Lewis structure indicates the bonding electron pairs and the nonbonding electron pairs. Then, to the Lewis structure, the valence-shell electron-pair repulsion (VSPER) theory is applied to determine the molecular geometry and the electron-group geometry. In order to identify the three-dimensional arrangement of atoms in a molecule, we need to know about the bond angle also. The valence-shell electron-pair repulsion theory states that bonding and non-bonding electron pairs repel each other so that electron pairs will move apart as far from each other as possible to minimize this repulsion.
Geometric structure of a molecule should be defined. Geometric structures of four simple molecules should be drawn and the bond angles should be indicated. The main idea of valence shell electron pair repulsion theory should be explained. Using several examples, how VSEPR theory is applied to predict their geometric structure should be explained. Concept Introduction: In determine the shapes of molecules; the first step is to draw the Lewis structure. The Lewis structure indicates the bonding electron pairs and the nonbonding electron pairs. Then, to the Lewis structure, the valence-shell electron-pair repulsion (VSPER) theory is applied to determine the molecular geometry and the electron-group geometry. In order to identify the three-dimensional arrangement of atoms in a molecule, we need to know about the bond angle also. The valence-shell electron-pair repulsion theory states that bonding and non-bonding electron pairs repel each other so that electron pairs will move apart as far from each other as possible to minimize this repulsion.
Solution Summary: The author explains how the valence shell electron pair repulsion theory is applied to predict the geometric structure of a molecule.
Geometric structure of a molecule should be defined. Geometric structures of four simple molecules should be drawn and the bond angles should be indicated. The main idea of valence shell electron pair repulsion theory should be explained. Using several examples, how VSEPR theory is applied to predict their geometric structure should be explained.
Concept Introduction:
In determine the shapes of molecules; the first step is to draw the Lewis structure. The Lewis structure indicates the bonding electron pairs and the nonbonding electron pairs. Then, to the Lewis structure, the valence-shell electron-pair repulsion (VSPER) theory is applied to determine the molecular geometry and the electron-group geometry. In order to identify the three-dimensional arrangement of atoms in a molecule, we need to know about the bond angle also. The valence-shell electron-pair repulsion theory states that bonding and non-bonding electron pairs repel each other so that electron pairs will move apart as far from each other as possible to minimize this repulsion.
Consider the following gas chromatographs of Compound A, Compound B, and a mixture of Compounds A and B.
Inject
A
B
mixture
Area= 9
Area = 5
Area = 3
Area
Inject
.
མི།
Inject
J2
What is the percentage of Compound B in the the mixture?
Rank these according to stability.
CH3
H3C
CH3
1
CH3
H3C
1 most stable, 3 least stable
O 1 most stable, 2 least stable
2 most stable, 1 least stable
O2 most stable, 3 least stable
O3 most stable, 2 least stable
O3 most stable, 1 least stable
CH3
2
CH3
CH3
H₂C
CH3
3
CH3
CH
Consider this IR and NMR:
INFRARED SPECTRUM
TRANSMITTANCE
0.8-
0.6
0.4
0.2
3000
10
9
8
00
HSP-00-541
7
CO
6
2000
Wavenumber (cm-1)
сл
5
ppm
4
M
Which compound gave rise to these spectra?
N
1000
1
0