OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
11th Edition
ISBN: 9781305864900
Author: Darrell Ebbing; Steven D. Gammon
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 12.93QP
A liquid solution consists of 0.30 mole fraction ethylene dibromide, C2H4Br2, and 0.70 mole fraction propylene dibromide, C2H4Br2. Both ethylene dibromide and propylene dibromide are volatile liquids; their vapor pressures at 85°C are 173 mmHg and 127 mmHg, respectively. Assume that each compound follows Raoult’s law in the solution. Calculate the total vapor pressure of the solution.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Please correct answer and don't used hand raiting
Please correct answer and don't used hand raiting
Use excel to plot the following titration data. Once you have done your plot, make sure to label the axes
correctly. Use your graph to determine the pK, for the weak acid. Attach your plot to the back of this
worksheet.
A 1.0M solution of weak acid was titrated with a base and the following data was collected.
Equivalents of Base
pH observed
0.05
3.4
0.15
3.9
0.25
4.2
0.40
4.5
0.60
4.9
0.75
5.2
0.85
5.4
0.95
6.0
Chapter 12 Solutions
OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
Ch. 12.1 - Prob. 12.1ECh. 12.1 - Identify the solute(s) and solvent(s) in the...Ch. 12.2 - Prob. 12.2CCCh. 12.2 - Which of the following compounds is likely to be...Ch. 12.2 - Which ion has the larger hydration energy, Na+ or...Ch. 12.2 - Prob. 12.3CCCh. 12.3 - A liter of water at 25C dissolves 0.0404 g O2 when...Ch. 12.3 - Most fish have a very difficult time surviving at...Ch. 12.4 - An experiment calls for 35.0 g of hydrochloric...Ch. 12.4 - Toluene, C6H5CH3, is a liquid compound similar to...
Ch. 12.4 - Prob. 12.7ECh. 12.4 - A solution is 0.120 m methanol dissolved in...Ch. 12.4 - A solution is 0.250 mole fraction methanol, CH3OH,...Ch. 12.4 - Urea, (NH2)2CO, is used as a fertilizer (sec the...Ch. 12.4 - Prob. 12.11ECh. 12.5 - Naphthalene, C10H8, is used to make mothballs....Ch. 12.5 - Prob. 12.5CCCh. 12.6 - How many grams of ethylene glycol, CH2OHCH2OH,...Ch. 12.6 - A 0.930-g sample of ascorbic acid (vitamin C) was...Ch. 12.6 - A 0.205-g sample of white phosphorus was dissolved...Ch. 12.7 - Calculate the osmotic pressure at 20C of an...Ch. 12.7 - Prob. 12.6CCCh. 12.8 - Prob. 12.17ECh. 12.8 - Each of the following substances is dissolved in a...Ch. 12.9 - Prob. 12.18ECh. 12.9 - If electrodes that are connected to a direct...Ch. 12 - Prob. 12.1QPCh. 12 - Prob. 12.2QPCh. 12 - Explain in terms of intermolecular attractions why...Ch. 12 - Prob. 12.4QPCh. 12 - Using the concept of hydration, describe the...Ch. 12 - What is the usual solubility behavior of an ionic...Ch. 12 - Give one example of each: a salt whose heat of...Ch. 12 - What do you expect to happen to a concentration of...Ch. 12 - Prob. 12.9QPCh. 12 - Pressure has an effect on the solubility of oxygen...Ch. 12 - Prob. 12.11QPCh. 12 - When two beakers containing different...Ch. 12 - Prob. 12.13QPCh. 12 - Prob. 12.14QPCh. 12 - Prob. 12.15QPCh. 12 - Prob. 12.16QPCh. 12 - One can often see sunbeams passing through the...Ch. 12 - Prob. 12.18QPCh. 12 - Explain on the basis that like dissolves like why...Ch. 12 - Prob. 12.20QPCh. 12 - Calculate the number of moles of barium chloride...Ch. 12 - Prob. 12.22QPCh. 12 - If 291g of a compound is added to 1.02 kg of water...Ch. 12 - A 5.1-g sample of CaCl2 is dissolved in a beaker...Ch. 12 - Consider two hypothetical pure substances, AB(s)...Ch. 12 - Equal numbers of moles of two soluble, substances,...Ch. 12 - Even though the oxygen demands of trout and bass...Ch. 12 - You want to purchase a salt to melt snow and ice...Ch. 12 - Prob. 12.29QPCh. 12 - Prob. 12.30QPCh. 12 - Prob. 12.31QPCh. 12 - Consider the following dilute NaCl(aq) solutions....Ch. 12 - Prob. 12.33QPCh. 12 - Prob. 12.34QPCh. 12 - If l-mol samples of urea, a nonelectrolyte, sodium...Ch. 12 - Prob. 12.36QPCh. 12 - Prob. 12.37QPCh. 12 - Prob. 12.38QPCh. 12 - Prob. 12.39QPCh. 12 - Prob. 12.40QPCh. 12 - Arrange the following substances in order of...Ch. 12 - Indicate which of the following is more soluble in...Ch. 12 - Prob. 12.43QPCh. 12 - Which of the following ions would be expected to...Ch. 12 - Arrange the following alkaline-earth-metal iodates...Ch. 12 - Explain the trends in solubility (grams per 100 mL...Ch. 12 - The solubility of carbon dioxide in water is 0.161...Ch. 12 - Prob. 12.48QPCh. 12 - Prob. 12.49QPCh. 12 - Prob. 12.50QPCh. 12 - Prob. 12.51QPCh. 12 - Prob. 12.52QPCh. 12 - Vanillin, C2H2O3, occurs naturally in vanilla...Ch. 12 - Lauryl alcohol, C12H25OH, is prepared from coconut...Ch. 12 - Fructose, C6H12O6, is a sugar occurring in honey...Ch. 12 - Caffeine. C8H10N4O2, is a stimulant found in tea...Ch. 12 - A 100.0-g sample of a brand of rubbing alcohol...Ch. 12 - An automobile antifreeze solution contains 2.50 kg...Ch. 12 - Prob. 12.59QPCh. 12 - Prob. 12.60QPCh. 12 - Concentrated hydrochloric acid contains 1.00 mol...Ch. 12 - Concentrated aqueous ammonia contains 1.00 mol NH3...Ch. 12 - Prob. 12.63QPCh. 12 - Prob. 12.64QPCh. 12 - A solution of vinegar is 0.763 M acetic arid,...Ch. 12 - A beverage contains tartaric acid, H2C4H4O6, a...Ch. 12 - Calculate the vapor pressure at 35C of a solution...Ch. 12 - What is the vapor pressure at 23C of a solution of...Ch. 12 - What is the boiling point of a solution of 0.133 g...Ch. 12 - A solution was prepared by dissolving 0.800 g of...Ch. 12 - An aqueous solution of a molecular compound...Ch. 12 - Urea, (NH2)2CO, is dissolved in 250.0 g of water....Ch. 12 - Prob. 12.73QPCh. 12 - Prob. 12.74QPCh. 12 - Safrole is contained in oil of sassafras and was...Ch. 12 - Butylated hydroxytoluene (BHT) is used as an...Ch. 12 - Prob. 12.77QPCh. 12 - Prob. 12.78QPCh. 12 - What is the freezing point of 0.0075 m aqueous...Ch. 12 - What is the freezing point of 0.0088 m aqueous...Ch. 12 - Prob. 12.81QPCh. 12 - In a mountainous location, the boiling point of...Ch. 12 - Prob. 12.83QPCh. 12 - Prob. 12.84QPCh. 12 - Prob. 12.85QPCh. 12 - Prob. 12.86QPCh. 12 - A gaseous mixture consists of 87.0 mole percent N2...Ch. 12 - A natural gas mixture consists of 88.0 mole...Ch. 12 - Prob. 12.89QPCh. 12 - Prob. 12.90QPCh. 12 - A 55-g sample of a gaseous fuel mixture contains...Ch. 12 - Prob. 12.92QPCh. 12 - A liquid solution consists of 0.30 mole fraction...Ch. 12 - What is the total vapor pressure at 20C of a...Ch. 12 - A sample of potassium aluminum sulfate 12-hydrate....Ch. 12 - A sample of aluminum sulfate 18-hydrate,...Ch. 12 - Urea, (NH2)2CO, has been used to melt ice from...Ch. 12 - Calcium chloride, CaCl2, has been used to melt ice...Ch. 12 - Prob. 12.99QPCh. 12 - Prob. 12.100QPCh. 12 - Which aqueous solution has the lower freezing...Ch. 12 - Which aqueous solution has the lower boiling...Ch. 12 - Commercially, sulfuric acid is usually obtained as...Ch. 12 - Prob. 12.104QPCh. 12 - A compound of manganese, carbon, and oxygen...Ch. 12 - A compound of cobalt, carbon, and oxygen contains...Ch. 12 - The carbohydrate digitoxose contains 48.64% carbon...Ch. 12 - Analysis of a compound gave 39.50% C, 2.21% H, and...Ch. 12 - Fish blood has an osmotic pressure equal to that...Ch. 12 - Prob. 12.110QPCh. 12 - Prob. 12.111QPCh. 12 - Prob. 12.112QPCh. 12 - How are phospholipids similar in structure to a...Ch. 12 - Prob. 12.114QPCh. 12 - Two samples of sodium chloride solutions are...Ch. 12 - Prob. 12.116QPCh. 12 - You have an aqueous, dilute solution of a...Ch. 12 - Prob. 12.118QPCh. 12 - Prob. 12.119QPCh. 12 - Prob. 12.120QPCh. 12 - When 79.3 g of a particular compound is dissolved...Ch. 12 - What is the boiling point of a solution made by...Ch. 12 - Prob. 12.123QPCh. 12 - Prob. 12.124QPCh. 12 - Prob. 12.125QPCh. 12 - Prob. 12.126QPCh. 12 - Prob. 12.127QPCh. 12 - Prob. 12.128QPCh. 12 - An aqueous solution is 0.797 M magnesium chloride....Ch. 12 - A CaCl2 solution at 25C has an osmotic pressure of...Ch. 12 - Prob. 12.131QPCh. 12 - Prob. 12.132QPCh. 12 - The lattice enthalpy of sodium chloride, H for...Ch. 12 - Prob. 12.134QPCh. 12 - Prob. 12.135QPCh. 12 - Prob. 12.136QPCh. 12 - Prob. 12.137QPCh. 12 - An aqueous solution is 20.0% by mass of sodium...Ch. 12 - Prob. 12.139QPCh. 12 - The freezing point of 0.109 m aqueous formic acid...Ch. 12 - A compound of carbon, hydrogen, and oxygen was...Ch. 12 - A compound of carbon, hydrogen, and oxygen was...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 1. Write the dissociation reaction then calculate the pH for the following STRONG substances. a. 2.5x103 M HBr b.5.6x10 M NaOHarrow_forward74. A contour map for an atomic orbital of hydrogen is shown below for the xy and xz planes. Identify the type (s, p, d, f, g . . .) of orbital. axis x axis z axis Cooo xy planearrow_forwardA buffer is prepared by adding 0.50 mol of acetic acid (HC2H3O2) and 0.75 mol of sodium acetate (NaC2H3O2) to enough water to form 2.00L solution. (pKa for acetic acid is 4.74) Calculate the pH of the buffer.arrow_forward
- Modify the given carbon skeleton to draw the major product of the following reaction. If a racemic mixture of enantiomers is expected, draw both enantiomers. Note: you can select a structure and use Copy and Paste to save drawing time. HBr کی CH3 کی Edit Drawingarrow_forwardSort the following into the classification for a reaction that is NOT at equilibrium versus a reaction system that has reached equilibrium. Drag the appropriate items to their respective bins. View Available Hint(s) The forward and reverse reactions proceed at the same rate. Chemical equilibrium is a dynamic state. The ratio of products to reactants is not stable. Reset Help The state of chemical equilibrium will remain the same unless reactants or products escape or are introduced into the system. This will disturb the equilibrium. The concentration of products is increasing, and the concentration of reactants is decreasing. The ratio of products to reactants does not change. The rate at which products form from reactants is equal to the rate at which reactants form from products. The concentrations of reactants and products are stable and cease to change. The reaction has reached equilibrium. The rate of the forward reaction is greater than the rate of the reverse reaction. The…arrow_forwardPlace the following characteristics into the box for the correct ion. Note that some of the characteristics will not be placed in either bin. Use your periodic table for assistance. Link to Periodic Table Drag the characteristics to their respective bins. ▸ View Available Hint(s) This anion could form a neutral compound by forming an ionic bond with one Ca²+. Reset Help This ion forms ionic bonds with nonmetals. This ion has a 1- charge. This is a polyatomic ion. The neutral atom from which this ion is formed is a metal. The atom from which this ion is formed gains an electron to become an ion. The atom from which this ion is formed loses an electron to become an ion. This ion has a total of 18 electrons. This ion has a total of 36 electrons. This ion has covalent bonds and a net 2- charge. This ion has a 1+ charge. Potassium ion Bromide ion Sulfate ionarrow_forward
- U Consider the following graph containing line plots for the moles of Product 1 versus time (minutes) and the moles of Product 2 versus time in minutes. Choose all of the key terms/phrases that describe the plots on this graph. Check all that apply. ▸ View Available Hint(s) Slope is zero. More of Product 1 is obtained in 12 minutes. Slope has units of moles per minute. plot of minutes versus moles positive relationship between moles and minutes negative relationship between moles and minutes Slope has units of minutes per moles. More of Product 2 is obtained in 12 minutes. can be described using equation y = mx + b plot of moles versus minutes y-intercept is at (12,10). y-intercept is at the origin. Product Amount (moles) Product 1 B (12,10) Product 2 E 1 Time (minutes) A (12,5)arrow_forwardSolve for x, where M is molar and s is seconds. x = (9.0 × 10³ M−². s¯¹) (0.26 M)³ Enter the answer. Include units. Use the exponent key above the answer box to indicate any exponent on your units. ▸ View Available Hint(s) ΜΑ 0 ? Units Valuearrow_forwardLearning Goal: This question reviews the format for writing an element's written symbol. Recall that written symbols have a particular format. Written symbols use a form like this: 35 Cl 17 In this form the mass number, 35, is a stacked superscript. The atomic number, 17, is a stacked subscript. "CI" is the chemical symbol for the element chlorine. A general way to show this form is: It is also correct to write symbols by leaving off the atomic number, as in the following form: atomic number mass number Symbol 35 Cl or mass number Symbol This is because if you write the element symbol, such as Cl, you know the atomic number is 17 from that symbol. Remember that the atomic number, or number of protons in the nucleus, is what defines the element. Thus, if 17 protons are in the nucleus, the element can only be chlorine. Sometimes you will only see 35 C1, where the atomic number is not written. Watch this video to review the format for written symbols. In the following table each column…arrow_forward
- need help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal…arrow_forwardneed help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal…arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY