
Program plan:
- Item, start variablesare used for input. There is structure listnode having data, nextPtr member variables which represents the linked list node.
- void insert(node **head, int value) function inserts the node in the a linked list.
- node *concat(node *flist, node *slist) function concat the two linked list and return the resultant linked list.
- void printList(node *head) function display the contents of the linked list.
Program description:
The main purpose of the program is to perform the concatenation of two linked list by implanting the concept which is same as strcat() function of string.

Explanation of Solution
Program:
#include <stdio.h> #include <conio.h> #include <alloc.h> #include <ctype.h> //structure of node of the linked list typedefstruct listnode { int data; struct listnode *nextPtr; } node; //function to insert a node in a linked list void insert(node &head,int value); //recursive function to concate the linked list node *concat(node *flist, node *slist); //function to print the content of linked list void printList(node *head); //main starts here void main() { int item; node *flist,*slist; clrscr(); //initialization of start node of linked list flist =NULL; slist =NULL; //loop to getting input from the user for first linked list while(1) { printf("\nEnter value to insert in a First List: 0 to End "); scanf("%d",&item); //check condition to terminate while loop if(item ==0) break; //insert value in a linked list insert(&flist, item); } //loop to getting input from the user for second linked list while(1) { printf("\nEnter value to insert in a Second List: 0 to End "); scanf("%d",&item); //check condition to terminate while loop if(item ==0) break; //insert value in a linked list insert(&slist, item); } // print the contents of linked list printf("\n Content of First List are as follows : "); printList(flist); // print the contents of linked list printf("\n Content of Second List are as follows : "); printList(slist); //call the function to reverse the linked list // and store the address of first node flist = concat(flist, slist); //print the contents of concated list printf("\n Concatenated List contents are as follows : "); printList(flist); getch(); } //function definition to insert node in a linked list void insert(node &head,int value) { node *ptr,*tempnode; //memory allocation for the new node ptr = malloc(sizeof(node)); //copy the value to the new node ptr->data = value; //set node's pointer to NULL ptr->nextPtr =NULL; //if the list is empty if(*head ==NULL) //make the first node *head = ptr; else { //copy the address of first node tempnode =*head; //traverse the list using loop until it reaches //to the last node while(tempnode->nextPtr !=NULL) tempnode = tempnode->nextPtr; //make the new node as last node tempnode->nextPtr = ptr; } } //function defintion to concat the list node *concat(node *flist, node *slist) { node *ptr; //check if list is empty if(flist ==NULL|| slist ==NULL) { printf("\none of the lists is empty"); //return the node returnNULL; } else { //store first node address ptr = flist; //traverse list until last node is not encountered while(ptr->nextPtr !=NULL) ptr = ptr->nextPtr; //store the address of first node of second list ptr->nextPtr = slist; } //return new list return flist; } //function definition to display linked list contents void printList(node *head) { node *ptr; //stores the address of first node ptr = head; //traverse the list until it reaches to the NULL while(ptr !=NULL) { //print the content of current node printf("%d ", ptr->data); //goto the next node ptr = ptr->nextPtr; } }
Explanation:In the above code, a structure is created which represents the node of the linked list. Two starting nodes are initialized which contains the address of first node of each list. User is asked to enter the values for first linked list and linked list is created using insert() function by passing the starting pointer and value. This process is repeated to create the second linked list. printList() function is used to display the contents of both lists. Both lists are concatenated using the concat() function by passing the both list. In this function first list is traversed up to last node and then last node pointer points to the first node of second list. Starting node address is returned and stored in the pointer. Finally, concatenated list is displayed using printList() function.
Sample output:
Want to see more full solutions like this?
Chapter 12 Solutions
C How to Program (8th Edition)
- This week we will be building a regression model conceptually for our discussion assignment. Consider your current workplace (or previous/future workplace if not currently working) and answer the following set of questions. Expand where needed to help others understand your thinking: What is the most important factor (variable) that needs to be predicted accurately at work? Why? Justify its selection as your dependent variable.arrow_forwardAccording to best practices, you should always make a copy of a config file and add a date to filename before editing? Explain why this should be done and what could be the pitfalls of not doing it.arrow_forwardIn completing this report, you may be required to rely heavily on principles relevant, for example, the Work System, Managerial and Functional Levels, Information and International Systems, and Security. apply Problem Solving Techniques (Think Outside The Box) when completing. should reflect relevance, clarity, and organisation based on research. Your research must be demonstrated by Details from the scenario to support your analysis, Theories from your readings, Three or more scholarly references are required from books, UWIlinc, etc, in-text or narrated citations of at least four (4) references. “Implementation of an Integrated Inventory Management System at Green Fields Manufacturing” Green Fields Manufacturing is a mid-sized company specialising in eco-friendly home and garden products. In recent years, growing demand has exposed the limitations of their fragmented processes and outdated systems. Different departments manage production schedules, raw material requirements, and…arrow_forward
- 1. Create a Book record that implements the Comparable interface, comparing the Book objects by year - title: String > - author: String - year: int Book + compareTo(other Book: Book): int + toString(): String Submit your source code on Canvas (Copy your code to text box or upload.java file) > Comparable 2. Create a main method in Book record. 1) In the main method, create an array of 2 objects of Book with your choice of title, author, and year. 2) Sort the array by year 3) Print the object. Override the toString in Book to match the example output: @Javadoc Declaration Console X Properties Book [Java Application] /Users/kuan/.p2/pool/plugins/org.eclipse.justj.openjdk.hotspo [Book: year=1901, Book: year=2010]arrow_forwardQ5-The efficiency of a 200 KVA, single phase transformer is 98% when operating at full load 0.8 lagging p.f. the iron losses in the transformer is 2000 watt. Calculate the i) Full load copper losses ii) half load copper losses and efficiency at half load. Ans: 1265.306 watt, 97.186%arrow_forward2. Consider the following pseudocode for partition: function partition (A,L,R) pivotkey = A [R] t = L for i L to R-1 inclusive: if A[i] A[i] t = t + 1 end if end for A [t] A[R] return t end function Suppose we call partition (A,0,5) on A=[10,1,9,2,8,5]. Show the state of the list at the indicated instances. Initial A After i=0 ends After 1 ends After i 2 ends After i = 3 ends After i = 4 ends After final swap 10 19 285 [12 pts]arrow_forward
- .NET Interactive Solving Sudoku using Grover's Algorithm We will now solve a simple problem using Grover's algorithm, for which we do not necessarily know the solution beforehand. Our problem is a 2x2 binary sudoku, which in our case has two simple rules: •No column may contain the same value twice •No row may contain the same value twice If we assign each square in our sudoku to a variable like so: 1 V V₁ V3 V2 we want our circuit to output a solution to this sudoku. Note that, while this approach of using Grover's algorithm to solve this problem is not practical (you can probably find the solution in your head!), the purpose of this example is to demonstrate the conversion of classical decision problems into oracles for Grover's algorithm. Turning the Problem into a Circuit We want to create an oracle that will help us solve this problem, and we will start by creating a circuit that identifies a correct solution, we simply need to create a classical function on a quantum circuit that…arrow_forwardusing r languagearrow_forward8. Cash RegisterThis exercise assumes you have created the RetailItem class for Programming Exercise 5. Create a CashRegister class that can be used with the RetailItem class. The CashRegister class should be able to internally keep a list of RetailItem objects. The class should have the following methods: A method named purchase_item that accepts a RetailItem object as an argument. Each time the purchase_item method is called, the RetailItem object that is passed as an argument should be added to the list. A method named get_total that returns the total price of all the RetailItem objects stored in the CashRegister object’s internal list. A method named show_items that displays data about the RetailItem objects stored in the CashRegister object’s internal list. A method named clear that should clear the CashRegister object’s internal list. Demonstrate the CashRegister class in a program that allows the user to select several items for purchase. When the user is ready to check out, the…arrow_forward
- 5. RetailItem ClassWrite a class named RetailItem that holds data about an item in a retail store. The class should store the following data in attributes: item description, units in inventory, and price. Once you have written the class, write a program that creates three RetailItem objects and stores the following data in them: Description Units in Inventory PriceItem #1 Jacket 12 59.95Item #2 Designer Jeans 40 34.95Item #3 Shirt 20 24.95arrow_forwardFind the Error: class Information: def __init__(self, name, address, age, phone_number): self.__name = name self.__address = address self.__age = age self.__phone_number = phone_number def main(): my_info = Information('John Doe','111 My Street', \ '555-555-1281')arrow_forwardFind the Error: class Pet def __init__(self, name, animal_type, age) self.__name = name; self.__animal_type = animal_type self.__age = age def set_name(self, name) self.__name = name def set_animal_type(self, animal_type) self.__animal_type = animal_typearrow_forward
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageNew Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage Learning



