Organic Chemistry-Package(Custom)
Organic Chemistry-Package(Custom)
4th Edition
ISBN: 9781259141089
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 12, Problem 12.65P
Interpretation Introduction

(a)

Interpretation: Synthesis of the given compound from acetylene and other required reagents is to be devised.

Concept introduction: Terminal alkynes can be converted into internal alkynes by forming new CC bond. This bond is formed by treatment of alkyne by strong base and alkyl halide.

The addition of H2 in presence of catalyst is known as catalytic hydrogenation reaction. Lindlar catalyst consists of palladium deposited on calcium carbonate which is poisoned or deactivated by lead or sulfur. In the presence of Lindlar catalyst, alkyne is reduced to cis-alkene.

In presence of peroxide, alkene is oxidized to epoxide this is known as epoxidation. The weak pi bond of alkene and weak OO bond of peroxide are broken and two new CO bonds are formed. Breaking of bonds and formation of bonds takes place in single step. mCPBA is metachloroperoxybenzoic acid.

Expert Solution
Check Mark

Answer to Problem 12.65P

Synthesis of the given compound from acetylene and other required reagents is shown below.

Organic Chemistry-Package(Custom), Chapter 12, Problem 12.65P , additional homework tip  1

Explanation of Solution

Synthesis of the given compound is shown below.

Organic Chemistry-Package(Custom), Chapter 12, Problem 12.65P , additional homework tip  2

Figure 1

In the first step, acetylene is converted to but-2-yne by forming two new CC bonds. These bonds are formed by treatment of acetylene by strong base NaNH2 and methyl bromide. Then but-2-yne is treated with H2 and Lindlar’s catalyst. The addition of H2 takes place in syn fashion to the triple bond. The product formed is (Z)-but-2-ene. In the final step, (Z)-but-2-ene is treated with mCPBA, alkene is oxidized to epoxide. Hence, the final product is (2R,3S)-2, 3-dimethyloxirane.

Conclusion

Synthesis of the given compound from acetylene and other required reagents is shown in Figure 1.

Interpretation Introduction

(b)

Interpretation: Synthesis of the given compound from acetylene and other required reagents is to be devised.

Concept introduction: Terminal alkynes can be converted into internal alkynes by forming new CC bond. This bond is formed by treatment of alkyne by strong base and alkyl halide.

In presence of sodium metal in ammonia, the alkyne is reduced to trans-alkene. The addition of H2 takes place in anti-fashion to the triple bond. The mechanism involves the addition of electron followed by protonation.

Expert Solution
Check Mark

Answer to Problem 12.65P

Synthesis of the given compound from acetylene and other required reagents is shown below.

Organic Chemistry-Package(Custom), Chapter 12, Problem 12.65P , additional homework tip  3

Explanation of Solution

Synthesis of the given compound is shown below.

Organic Chemistry-Package(Custom), Chapter 12, Problem 12.65P , additional homework tip  4

Figure 2

In the first step, acetylene is converted to but-2-yne by forming two new CC bonds. These bonds are formed by the treatment of acetylene by strong base NaNH2 and methyl bromide.

In the final step, but-2-yne is treated with Na,NH3. The addition of H2 takes place in anti-fashion to the triple bond. Hence, the final product is trans-but-2-ene.

In the final step, (E)-but-2-ene is treated with mCPBA, that is, alkene is oxidized to two enantiomers of epoxide.

Conclusion

Synthesis of the given compound from acetylene and other required reagents is shown in Figure 2.

Interpretation Introduction

(c)

Interpretation: Synthesis of the given compound from acetylene and other required reagents is to be devised.

Concept introduction: Terminal alkynes can be converted into internal alkynes by forming new CC bond. This bond is formed by treatment of alkyne by strong base and alkyl halide.

The addition of H2 in presence of catalyst is known as catalytic hydrogenation reaction. Lindlar catalyst consists of palladium deposited on calcium carbonate which is poisoned or deactivated by lead or sulfur. In presence of Lindlar catalyst, alkyne is reduced to cis-alkene.

Addition of two hydroxyl groups on double bond to form 1,2-diol is known as dihydroxylation. In presence of OsO4, syndihydroxylation takes place. In this reaction two hydroxyl groups are added on the same side of the double bond.

Expert Solution
Check Mark

Answer to Problem 12.65P

Synthesis of the given compound from acetylene and other required reagents is shown below.

Organic Chemistry-Package(Custom), Chapter 12, Problem 12.65P , additional homework tip  5

Explanation of Solution

Synthesis of the given compound is shown below.

Organic Chemistry-Package(Custom), Chapter 12, Problem 12.65P , additional homework tip  6

Figure 3

In the first step, acetylene is converted to but-2-yne by forming two new CC bonds. These bonds are formed by treatment of acetylene by strong base NaNH2 and methyl bromide. Then but-2-yne is treated with H2 and Lindlar’s catalyst. The addition of H2 takes place in syn fashion to the triple bond. The product formed is (Z)-but-2-ene. In the final step, (Z)-but-2-ene undergoes syn dihydroxylation to form the desired alcohol.

Conclusion

Synthesis of the given compound from acetylene and other required reagents is shown in Figure 3.

Interpretation Introduction

(d)

Interpretation: Synthesis of the given compound from acetylene and other required reagents is to be devised.

Concept introduction: Terminal alkynes can be converted into internal alkynes by forming new CC bond. This bond is formed by treatment of alkyne by strong base and alkyl halide.

The addition of H2 in presence of catalyst is known as catalytic hydrogenation reaction. Lindlar catalyst consists of palladium deposited on calcium carbonate which is poisoned or deactivated by lead or sulfur. In presence of Lindlar catalyst, alkyne is reduced to cis-alkene.

In presence of peroxide, alkene is oxidized to epoxide. This is known as epoxidation. The weak pi bond of alkene and weak OO bond of peroxide are broken and two new CO bonds are formed. Breaking of bonds and formation of bonds takes place in single step. mCPBA is metachloroperoxybenzoic acid.

Expert Solution
Check Mark

Answer to Problem 12.65P

Synthesis of the given compound from acetylene and other required reagents is shown below.

Organic Chemistry-Package(Custom), Chapter 12, Problem 12.65P , additional homework tip  7

Explanation of Solution

Synthesis of the given compound is shown below.

Organic Chemistry-Package(Custom), Chapter 12, Problem 12.65P , additional homework tip  8

Figure 4

In the first step, acetylene is converted to but-2-yne by forming two new CC bonds. These bonds are formed by treatment of acetylene by strong base NaNH2 and methyl bromide. Then but-2-yne is treated with H2 and Lindlar’s catalyst. The addition of H2 takes place in syn fashion to the triple bond. The product formed is (Z)-but-2-ene. In the final step, (Z)-but-2-ene is treated with mCPBA, alkene is oxidized to epoxide. Epoxidation is followed by ring opening with H3O+ to form two enantiomers of diols.

Conclusion

Synthesis of the given compound from acetylene and other required reagents is shown in Figure 4.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Devise a synthesis of each compound from cyclohexene and organic alcohols. You may use any other required organic or inorganic reagents.
Devise a synthesis of each compound from cyclohex-2-enone and organic halides having one or two carbons. You may use any other required inorganic reagents.
Synthesize each compound from acetylene. You may use any other organic or inorganic reagents.

Chapter 12 Solutions

Organic Chemistry-Package(Custom)

Ch. 12 - Problem 12.11 (a) Draw the structure of a compound...Ch. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Prob. 12.14PCh. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - Problem 12.18 Draw the products formed when both...Ch. 12 - Prob. 12.19PCh. 12 - Prob. 12.20PCh. 12 - Prob. 12.21PCh. 12 - Prob. 12.22PCh. 12 - Prob. 12.23PCh. 12 - Problem 12.24 Draw the organic products in each of...Ch. 12 - Prob. 12.25PCh. 12 - Prob. 12.26PCh. 12 - Problem 12.27 Draw the products of each Sharpless...Ch. 12 - Prob. 12.28PCh. 12 - 12.29 Draw the products formed when A is treated...Ch. 12 - Prob. 12.30PCh. 12 - 12.31 Devise a synthesis of the following compound...Ch. 12 - Label each reaction as oxidation, reduction, or...Ch. 12 - Prob. 12.33PCh. 12 - Prob. 12.34PCh. 12 - Prob. 12.35PCh. 12 - Prob. 12.36PCh. 12 - 12.37 Stearidonic acid (C18H28O2) is an...Ch. 12 - Draw the organic products formed when cyclopentene...Ch. 12 - Prob. 12.39PCh. 12 - Draw the organic products formed when allylic...Ch. 12 - Draw the organic products formed in each reaction...Ch. 12 - Draw the organic products formed in each reaction....Ch. 12 - Prob. 12.43PCh. 12 - Prob. 12.44PCh. 12 - Prob. 12.45PCh. 12 - What alkene is needed to synthesize each 1,2-diol...Ch. 12 - Prob. 12.47PCh. 12 - Draw the products formed after Steps 1 and 2 in...Ch. 12 - Prob. 12.49PCh. 12 - Prob. 12.50PCh. 12 - Prob. 12.51PCh. 12 - What alkyne gives each set of products after...Ch. 12 - Prob. 12.53PCh. 12 - Prob. 12.54PCh. 12 - Prob. 12.55PCh. 12 - 12.54 An unknown compound A of molecular formula ...Ch. 12 - 12.55 DHA is a fatty acid derived from fish oil...Ch. 12 - Prob. 12.58PCh. 12 - Prob. 12.59PCh. 12 - 12.58 Epoxidation of the following allylic alcohol...Ch. 12 - What allylic alcohol and DET isomer are needed to...Ch. 12 - Devise a synthesis of each hydrocarbon from...Ch. 12 - Prob. 12.63PCh. 12 - 12.62 It is sometimes necessary to isomerize a cis...Ch. 12 - Prob. 12.65PCh. 12 - Prob. 12.66PCh. 12 - Prob. 12.67PCh. 12 - Prob. 12.68PCh. 12 - Devise a synthesis of each compound from the...Ch. 12 - Devise a synthesis of each compound from acetylene...Ch. 12 - Prob. 12.71PCh. 12 - Prob. 12.72PCh. 12 - Prob. 12.73PCh. 12 - Prob. 12.74PCh. 12 - Prob. 12.75PCh. 12 - Prob. 12.76PCh. 12 - 12.72 Draw a stepwise mechanism for the following...Ch. 12 - Prob. 12.78PCh. 12 - Prob. 12.79PCh. 12 - Prob. 12.80PCh. 12 - 12.75 Sharpless epoxidation of allylic alcohol X...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Nomenclature: Crash Course Chemistry #44; Author: CrashCourse;https://www.youtube.com/watch?v=U7wavimfNFE;License: Standard YouTube License, CC-BY