
Concept explainers
Draw the organic products formed when allylic alcoholA is treated with each reagent.
a.
b.
c.
d.
e.
f.
g. [1]
h.

(a)
Interpretation: The product formed when A is treated with
Concept introduction: The addition of
Answer to Problem 12.40P
The product formed when A is treated with
Explanation of Solution
When A is treated with
Figure 1
The product formed when A is treated with

(b)
Interpretation: The product formed when A is treated with
Concept introduction: In presence of peroxide alkene is oxidized to epoxide this is known as epoxidation. The weak pi bond of alkene and weak
Answer to Problem 12.40P
The product formed when A is treated with
Explanation of Solution
In the given reaction, when A is treated with
Figure 2
The product formed when A is treated with

(c)
Interpretation: The product formed when A is treated with
Concept introduction: Alcohols are oxidized to different carbonyl compounds depending upon the reagents and alcohol used. In presence of strong oxidizing reagents such as
Answer to Problem 12.40P
The product formed when A is treated with
Explanation of Solution
In the given reaction, when A is treated with
Figure 3
The product formed when A is treated with

(d)
Interpretation: The product formed when A is treated with
Concept introduction: Alcohols are oxidized to different carbonyl compounds depending upon the reagents and alcohol used. In the presence of strong oxidizing reagents such as
Answer to Problem 12.40P
The product formed when A is treated with
Explanation of Solution
In the given reaction, when A is treated with
Figure 4
The product formed when A is treated with

(e)
Interpretation: The product formed when A is treated with Sharpless reagent
Concept introduction: Sharpless epoxidation involves the oxidation of double bond between carbon atoms to epoxide. This oxidation occurs only in allylic alcohol. This is an enantioselective oxidation, which means predominantly one enantiomer is formed. Sharpless reagents are
Answer to Problem 12.40P
The product formed when A is treated with Sharpless reagent
Explanation of Solution
There are two different chiral diethyl tartrate isomers,
When epoxidation is done using
Figure 5
The product formed when A is treated with Sharpless reagent

(f)
Interpretation: The product formed when A is treated with Sharpless reagent
Concept introduction: Sharpless epoxidation involves the oxidation of double bond between carbon atoms to epoxide. This oxidation occurs only in allylic alcohol. This is an enantioselective oxidation, which means predominantly one enantiomer is formed. Sharpless reagents are
Answer to Problem 12.40P
The product of formed when A is treated with Sharpless reagent
Explanation of Solution
There are two different chiral diethyl tartrate isomers,
When epoxidation is done using
Figure 6
The product formed when A is treated with Sharpless reagent

(g)
Interpretation: The product formed when A is treated with given reagent is shown in Figure 7.
Concept introduction: Alcohols on treatment with phosphorus tribromide gives alkyl bromide. The
Answer to Problem 12.40P
The product formed in the given reaction is shown in Figure 7.
Explanation of Solution
The given reaction is,
Figure 7
When the given alcohol is treated with
The product formed when A is treated with given reagent is shown in Figure 7.

(h)
Interpretation: The product formed when A is treated with
Concept introduction:
Answer to Problem 12.40P
The product formed when A is treated with
Explanation of Solution
In the given reaction, when A is treated with
Figure 8
The product formed when A is treated with
Want to see more full solutions like this?
Chapter 12 Solutions
Organic Chemistry-Package(Custom)
- true or false The equilibrium constant for this reaction is 0.20. N2O4(g) ⇔ 2NO2(g) Based on the above, the equilibrium constant for the following reaction is 0.4. 2N2O4(g) ⇔ 4NO2(g)arrow_forwardtrue or false Using the following equilibrium, if heat is added the equilibrium will shift toward the reactants. N2(g) + 3H2(g) ⇔ 2NH3(g) + heatarrow_forwardTrue or False Using the following equilibrium, if heat is added the equilibrium will shift toward the products. N2O4(g) + heat ⇔ 2NO2(g)arrow_forward
- true or false Using the following equilibrium, if solid carbon is added the equilibrium will shift toward the products. C(s) + CO2(g) ⇔ 2CO(g)arrow_forwardProvide the complete mechanism for the reaction below. You must include appropriate arrows,intermediates, and formal charges. Please also provide a reason to explain why the 1,4-adduct is preferred over the 1,3-adduct.arrow_forwardWhich of the following pairs are resonance structures of one another? I. III. || III IV + II. :0: n P !༠ IV. EN: Narrow_forward
- Predict the major organic product(s) and byproducts (either organic or inorganic) for thefollowing reactions.arrow_forwardA 8.25 g sample of aluminum at 55°C released 2500 J of heat. The specific heat of aluminum is 0.900 J/g°C. The density of aluminum is 2.70 g/mL. Calculate the final temperature of the aluminum sample in °C.arrow_forwardPredict the major organic product(s) and byproducts (either organic or inorganic) for thefollowing reactions.arrow_forward
- Predict the major organic product(s) and byproducts (either organic or inorganic) for thefollowing reaction.arrow_forwardplease helparrow_forwardExperiment 1 Data Table 1: Conservation of Mass - Initial Mass Data Table 1 Data Table 2 Data Table 3 Data Table 4 Panel 1 Photo 1 Data Table 5 Reaction Mass of test tube and 5.0% HC₂H₂O2 (g) # (A) (B) Mass of NaHCO, (g) Mass of balloon and NaHCO, (g) (C) 0.10 1 0829 14.38g 0.20 2 0.929 14.29g 0.35 1.00g 3 14.25g 0.50 1.14g 14.29 Experiment 1 Data Table 2: Moles of HC2H3O2 Reaction Volume of Mass of Moles of HC₂H₂O₂ 5.0% Vinegar (g) (ML) 5.0 0.25 0042 mol 2 5.0 0.25 0042 mol 3 5.0 0.25 0042 mol 5.0 0.25 0042 mol Experiment 1 Data Table 3: Moles of NaHCO3 Reaction Mass of NaHCO (g) 10g 20g 35g 50g Experiment 1 Data Table 4: Theoretical Yield of CO₂ Reaction # 1 2 3 Experiment 1 Total mass before reaction (g) (D=A+C) 15.29 15.21g 15.25g 15.349 Exercise 1 Data Table 1 Data Table 2 Data Table 3 Data Table 4 Panel 1 Photo 1 Data Table 5 Exercise 1- Data Table 1 Data Table 2 DataTable 3 Data Table 4 Panel 1 Photo 1 Data Table 5 Exercise 1- Moles of NaHCO 0012 mol 0025 mol 0044 mol 0062 mol…arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning

