(a)
Interpretation:
It is to be explained whether the given transformation would be a result of acid-catalyzed hydration or oxymercuration-reduction.
Concept introduction:
The acid-catalyzed hydration of an
The oxymercuration-reduction is also the reaction of addition of water through the
Answer to Problem 12.44P
The given transformation can be carried out by oxymercuration-reduction. The detailed mechanism is as follows:
Explanation of Solution
The given equation is
In the substrate, the alkene
The alkene substrate, on reaction with mercury
In the first step, the electron rich
In the second step, the water molecule acts as a nucleophile on one of the carbons of the three-membered ring to open the ring, followed by deprotonation of the positively charged oxygen atom.
The product formed in the previous step is then subjected to reduction with sodium borohydride,
The preparation of the given compound is explained indicating the addition of water across the
(b)
Interpretation:
It is to be explained whether the given transformation would be a result of acid-catalyzed hydration or oxymercuration-reduction.
Concept introduction:
The acid-catalyzed hydration of an alkene is the electrophilic addition of water across the
The oxymercuration-reduction is also the reaction of addition of water through the
Answer to Problem 12.44P
The given transformation can be carried out by acid-catalyzed hydration. The detailed mechanism is as follows:
Explanation of Solution
The given equation is
In the substrate, the alkene
The first step is the formation of a secondary carbocation by proton transfer reaction. The proton transfers to the less substituted double bonded carbon.
The secondary carbocation can be rearranged to more stable tertiary as well as resonance stabilized carbocation by
In the second step, the water molecule acts as a nucleophile on one of the carbons of the three-membered ring to open the ring, followed by deprotonation of the positively charged oxygen atom.
The detailed mechanism for the given reaction is drawn by suggesting that the reaction occurred through carbocation rearrangement.
(c)
Interpretation:
It is to be explained whether the given transformation would be a result of acid-catalyzed hydration or oxymercuration-reduction.
Concept introduction:
The acid-catalyzed hydration of an alkene is the electrophilic addition of water across the
The oxymercuration-reduction is also the reaction of addition of water through the
Answer to Problem 12.44P
The given transformation can be carried out by acid catalyzed hydration. The detailed mechanism is as follows:
Explanation of Solution
The given equation is
In the substrate, the alkene
The first step is the formation of a secondary carbocation by proton transfer reaction. The proton transfers to the less substituted double bonded carbon.
The secondary carbocation can be rearranged to more stable tertiary by
In the second step, the water molecule acts as a nucleophile on one of the carbons of the three-membered ring to open the ring, followed by deprotonation of the positively charged oxygen atom.
The detailed mechanism for the given reaction is drawn by suggesting that the reaction occurred through carbocation rearrangement.
(d)
Interpretation:
It is to be explained whether the given transformation would be a result of acid-catalyzed hydration or oxymercuration-reduction.
Concept introduction:
The acid-catalyzed hydration of an alkene is the electrophilic addition of water across the
The oxymercuration-reduction is also the reaction of addition of water across the
Answer to Problem 12.44P
The given transformation can be carried out by oxymercuration-reduction. The detailed mechanism is as follows:
Explanation of Solution
The given equation is
In the substrate, the alkene
The alkene substrate, on reaction with mercury
In the first step, the electron rich
In the second step, the water molecule acts as a nucleophile on one of the carbons of the three-membered ring to open the ring, followed by deprotonation of the positively charged oxygen atom.
The product formed in the previous step is then subjected to reduction with sodium borohydride,
The preparation of the given compound is explained indicating the addition of water across the
Want to see more full solutions like this?
Chapter 12 Solutions
Organic Chemistry: Principles and Mechanisms (Second Edition)
- A problem often encountered in the oxidation of primary alcohols to acids is that esters are sometimes produced as by-products. For example, oxidation of ethanol yields acetic acid and ethyl acetate: Propose a mechanism to account for the formation of ethyl acetate. Take into account the reversible reaction between aldehydes and alcohols:arrow_forwardWhich of the reaction conditions could afford the following transformation?arrow_forwardExplain why methyl trifluoroacetate, CF3CO2CH3, is more reactive than methyl acetate, CH3CO2CH3, in nucleophilic acyl substitution reactions.arrow_forward
- What is the skeletal structure of the alkyl halide that forms the following alkene as its only product in an elimination reaction?arrow_forwardThe proper reaction scheme by indicating the reactant structure, all necessary reagents, or the major organic product(s) for each indicated transformation.arrow_forwardThe question is: "Draw the curved arrow mechanism for the reaction between pentan-2-one and (CH3)3O– in t-butanol to form an enolate. Draw all electrons and charges on both resonance structures. Then answer the question about the reaction." I got the initial arrows correct, but am not entirely sure what the carbanion intermediate would look like and then what the curved arrows would be to convert it to its final oxanion formarrow_forward
- МЕСНANISMS 1,2-epoxy-1-methylcyclopentane undergoes both acid-catalyzed and base-catalyzed opening of the epoxide ring to form two different products. > Using ethanol as the solvent and an appropriate acid, show the steps in the acid catalyzed mechanism, writing structures for all products of the steps. Circle the major product(s). > Using ethanol as the solvent and an appropriate base, show the steps in the base- catalyzed mechanism, writing structures for all products of the steps. Circle the major product(s). 1,2-epoxy-1-methylcyclopentane CH3arrow_forwardIn base-catalyzed halogenation of acetone, how do you explain why the second and third halogenation takes place on the same carbon but not on the carbon in the other methyl group?arrow_forwardb) Esters can undergo hydrolysis to give an alcohol and a carboxylic acid. Lactone P which is a cyclic ester, can undergo base-catalyzed hydrolysis to give a hydroxy carboxylic acid. Write the plausible mechanism for the transformation.arrow_forward
- Give answer last three questions with explanationarrow_forward6. Complete the following reactions by providing the intermediate(s) and product(s). CH3OH, Harrow_forwardWhich of these transformations would be the result of acid-catalyzed hydration, and which would be the result of oxymercuration-reduction? (a) (b) OH ОН (c) (d) OH OHarrow_forward
- Macroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks ColeOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning