![General Chemistry - Standalone book (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_largeCoverImage.gif)
Consider two hypothetical pure substances, AB(s) and XY(s). When equal molar amounts of these substances are placed in separate 500-mL samples of water, they undergo the following reactions:
- a Which solution would you expect to have the lower boiling point? Why?
- b Would you expect the vapor pressures of the two solutions to be equal? If not, which one would you expect to have the higher vapor pressure?
- c Describe a procedure that would make the two solutions have the same boiling point.
- d If you took 250 mL of the AB(aq) solution prepared above, would it have the same boiling point as the original solution? Be sure to explain your answer.
- e The container of XY(aq) is left out on the bench top for several days, which allows some of the water to evaporate from the solution. How would the melting point of this solution compare to the melting point of the original solution?
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
Two pure hypothetical substances have to be considered – XY(s) and AB(s). The two substances are taken in equal number of moles and made into solution in separate
The solution having higher boiling point has to be identified and the same has to be explained.
Concept Introduction:
Boiling point of a liquid substance is defined as the temperature at which the vapor pressure of the liquid becomes equal to the atmospheric pressure.
Boiling point of a substance can be determined by the formula,
Where,
Answer to Problem 12.25QP
Aqueous solution of AB will have higher boiling than that of XY.
Explanation of Solution
Boiling point of a substance can be determined by the formula
Substance AB furnishes two ions in solution and so it has ‘i’ value 2. XY dissolves as molecular compound and don’t form any ions and has ‘i’ value 1. Hence solution of AB will have higher boiling point than that of XY.
Substance that produces more number of ions per unit formula tends to have higher boiling point.
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
Two pure hypothetical substances have to be considered – XY(s) and AB(s). The two substances are taken in equal number of moles and made into solution in separate
Vapor pressure of the two solutions has to be compared.
Concept Introduction:
Vapor pressure of a substance is known as the pressure exerted by molecules on the vapor phase when they are in equilibrium with their actual phase which can be liquid or solid.
A substance is said to be volatile if it vaporizes readily at room temperature itself. Such substances have high vapor pressure as most of its molecules tend to exist in vapor phase. A substance is said to be non-volatile if it doesn’t vaporize spontaneously and remains stable.
Vapor pressure of a volatile solvent can be lowered by addition of a non-volatile solute. Raoult’s law deals with the vapor pressure of pure solvents and solution which states –
Partial pressure of solvent is equivalent to the product of vapor pressure of the solvent in its pure state and mole fraction of solvent in the solution. It is expressed as,
Where,
When the solute is non-volatile, the vapor pressure of the whole solution is equal to
The lowering of vapor pressure of the solvent due to the addition of non-volatile solute is expressed as,
Where,
If the solute is an Ionic compound, the equation becomes,
Where,
Answer to Problem 12.25QP
Aqueous solution of XY will have higher vapor pressure than that of AB.
Explanation of Solution
According to Raoult’s law, lowering of vapor pressure is directly proportional to ‘i’ value of the substance. Substance AB furnishes two ions in solution and so it has ‘i’ value 2. Hence the vapor pressure is lowered to more extent in this case. XY dissolves as molecular compound and don’t form any ions and has ‘i’ value 1. Hence solution of XY will have higher vapor pressure than that of AB.
Substance that produces more number of ions per unit formula tends to have lower vapor pressure.
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
Two pure hypothetical substances have to be considered – XY(s) and AB(s). The two substances are taken in equal number of moles and made into solution in separate
A procedure to make the two solutions to have same boiling point has to be described.
Explanation of Solution
As the compound AB has ‘i’ factor 2, altering the ‘i’ factor of XY from 1 to 2, results in two solutions to have same boiling point. Doubling the concentration of XY makes XY to have ‘i’ factor 2 that eventually both the solutions will have same boiling point.
The ‘i’ factor of solute in the solution governs the boiling point and many other colligative properties of the substance.
(d)
![Check Mark](/static/check-mark.png)
Interpretation:
Two pure hypothetical substances have to be considered – XY(s) and AB(s). The two substances are taken in equal number of moles and made into solution in separate
The boiling point of original solution of AB(s) and its
Explanation of Solution
Boiling point of any substance is independent of volume or quantity. Hence the boiling point of aqueous solution of AB and
Boiling point of a substance doesn’t vary with volume and it varies only with concentration of the solute in the solution.
(e)
![Check Mark](/static/check-mark.png)
Interpretation:
Two pure hypothetical substances have to be considered – XY(s) and AB(s). The two substances are taken in equal number of moles and made into solution in separate
Melting point of the original solution of XY and that of the solution in which some quantity of solvent has been evaporated has to be compared.
Concept Introduction:
Melting point of a substance is the temperature at which a solid substance remains in equilibrium with liquid substance whereas freezing point of the substance is temperature at which liquid substance remains in equilibrium with solid substance.
Answer to Problem 12.25QP
Melting point (Freezing point) of original solution will be higher than that of the solution in which some amount of the solvent has been evaporated.
Explanation of Solution
Freezing point of the solution depends upon the concentration of solute. Greater the concentration of the solute, lower will be the freezing point of the solution. When solvent evaporates the concentration of solute XY becomes higher that it will freeze at lower temperature than that of the pure solvent and that of the original solution XY (aq).
Higher the solute concentration, lower will be the freezing point of solution.
Want to see more full solutions like this?
Chapter 12 Solutions
General Chemistry - Standalone book (MindTap Course List)
- Nonearrow_forward(9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception to the general ionization energy (IE) trend. For the two elements involved, answer the following questions. Be sure to cite sources for all physical data that you use. a. (2 pts) Identify the two elements and write their electronic configurations. b. (2 pts) Based on their configurations, propose a reason for the IE trend exception. c. (5 pts) Calculate effective nuclear charges for the last electron in each element and the Allred-Rochow electronegativity values for the two elements. Can any of these values explain the IE trend exception? Explain how (not) - include a description of how IE relates to electronegativity.arrow_forwardPlease explain thoroughly and provide steps to draw.arrow_forward
- As you can see in the picture, the instrument uses a Xe source. Given that the instrument is capable of measuring from 200-800nm, if Xe was not used, what other source(s) could be used? Refer to figure 7-3. How many monochrometers does this instrument have? Why? Trace the light as it goes from the Xenon lamp all the way to the circle just slightly to the right and a little bit down from S4. What do you think that circle is? In class we talked about many types of these, which kind do you think this one is for a fluorimeter? Why? Explain. What is/are some strategy(ies) that this instrument has for dealing with noise that you see present in the optics diagram? Why does a fluorescence cuvette have to be clear on four sides?arrow_forwardProvide steps and thoroughly solve.arrow_forwardNonearrow_forward
- Devise a synthesis to prepare 4-tert-butyl-2-nitrotoluene from toluene. Complete the following reaction scheme. Part 1 of 4 Step 1 Step 2 A B Draw the structure for compound B, 4-tert-butyl-2-nitrotoluene. Click and drag to start drawing a structure. 'O Х ப:arrow_forwardWhat is N hybridized? sp3 or sp2? whyarrow_forwardDate Unknown o Hydrated Salt Lab Sec. Name Trial I Trial 2 1. Mass of fired crucible and lid (g) 2. Mass of fired crucible, lid, and hydrated sah (g) 3. Instructor's approval of flame and apparatus 4. Mass of crucible, lid, and anhydrous salt Ist mass measurement (g) 2nd mass measurement (g) 3rd mass measurement (g). Desk No. Trial 3 48.833 46.808 213.692 51.507 9.359 46,615 50.296 48.211 45.351 50.142 48.146 45.1911 50.103 48.132 45.186 5. Final mass of crucible, lid, and anhydrous salt (g) 50.180 4.13 45.243 Calculations 1. Mass of hydrated salt (g) 2. Mass of anhydrous salt (g) 2.674 2.491 2.9239 1.3479 1.2959 1.5519 3. Mass of water lost (g) 1.32791969 1.322g 4. Percent by mass of volatile water in hydrated salt (%) 49.6% 48% 216.9% 5. Average percent HO in bydrated salt (%H,O) 5. Standard deviation of %H,O Relative standard deviation of %H,O in hydrated salt (RSD) how calculations on next page. 48.17% Data Analysis, B Data Analysis, C Data Analysis, D Experiment 5 89arrow_forward
- Considering the irregular electronic configurations we discussed for certain transitionmetals, think about the possibility of silicon (Si) having a [Ne]3s 2 3p 2 configuration vs.[Ne]3s 1 3p 3. Discuss the pros and cons of both configurations. Which one does Si actuallyadopt and why?arrow_forward(5 Pts) Currently, the last element in the periodic table is number 118, oganesson (Og). Channel your inner Dimitri Mendeleev and predict element 119’s electronic configuration, atomic mass, density, and either melting or boiling point. Justify your answers.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)