
Concept explainers
(a)
Interpretation:
The member that has higher boiling point in the given pair has to be identified.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
(b)
Interpretation:
The member that has higher boiling point in the given pair has to be identified.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons. They both occur naturally.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
(c)
Interpretation:
The member that has higher boiling point in the given pair has to be identified.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons. They both occur naturally.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
(d)
Interpretation:
The member that has higher boiling point in the given pair has to be identified.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons. They both occur naturally.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.

Trending nowThis is a popular solution!

Chapter 12 Solutions
GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
- Indicate the formula of the compound, that is the result of the N- alquilación (nucleofílic substitution), in which an additional lateral chain was formed (NH-CH2-COOMe). F3C. CF3 NH NH2 Br о OMe K2CO3, DABCO, DMFarrow_forwardSynthesis of 1-metilbenzotriazole from 1,2-diaminobenceno.arrow_forwardSynthesis of 1-metilbenzotriazole.arrow_forward
- Indicate the formula of the compound, that is the result of the N- alquilación (nucleofílic substitution), in which an additional lateral chain was formed (NH-CH2-COOMe). F3C. CF3 NH NH2 Br о OMe K2CO3, DABCO, DMFarrow_forwardIdentify the mechanism through which the following reaction will proceed and draw the major product. Part 1 of 2 Br KOH EtOH Through which mechanism will the reaction proceed? Select the single best answer. E1 E2 neither Part: 1/2 Part 2 of 2 Draw the major product formed as a result of the reaction. Click and drag to start drawing a structure. Xarrow_forwardWhat is single-point calibration? Provide an example.arrow_forward
- Draw the major product formed via an E1 pathway.arrow_forwardPart 9 of 9 Consider the products for the reaction. Identify the major and minor products. HO Cl The E stereoisomer is the major product and the Z stereoisomer is the minor product ▼ S major product minor productarrow_forwardConsider the reactants below. Answer the following questions about the reaction mechanism and products. HO Clarrow_forward
- julietteyep@gmail.com X YSCU Grades for Juliette L Turner: Orc X 199 A ALEKS - Juliette Turner - Modul X A ALEKS - Juliette Turner - Modul x G butane newman projection - Gox + www-awa.aleks.com/alekscgi/x/Isl.exe/10_u-IgNslkr7j8P3jH-IBxzaplnN4HsoQggFsejpgqKoyrQrB2dKVAN-BcZvcye0LYa6eXZ8d4vVr8Nc1GZqko5mtw-d1MkNcNzzwZsLf2Tu9_V817y?10Bw7QYjlb il Scribbr citation APA SCU email Student Portal | Main Ryker-Learning WCU-PHARM D MySCU YSCU Canvas- SCU Module 4: Homework (Ch 9-10) Question 28 of 30 (1 point) | Question Attempt: 1 of Unlimited H₂SO heat OH The mechanism of this reaction involves two carbocation intermediates, A and B. Part 1 of 2 KHSO 4 rearrangement A heat B H₂O 2 OH Draw the structure of A. Check Search #t m Save For Later Juliet Submit Assignm 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardThe electrons flow from the electron-rich atoms of the nucleophile to the electrons poor atoms of the alkyl halide. Identify the electron rich in the nucleophile. Enter the element symbol only, do not include any changes.arrow_forwardHello, I am doing a court case analysis in my Analytical Chemistry course. The case is about a dog napping and my role is prosecution of the defendant. I am tasked in the Area of Expertise in Neutron Activation and Isotopic Analysis. Attached is the following case study reading of my area of expertise! The landscaping stone was not particularly distinctive in its decoration but matched both the color and pattern of the Fluential’s landscaping stone as well as the stone in the back of the recovered vehicle. Further analysis of the stone was done using a technique called instrumental neutron activation analysis. (Proceed to Neutron Activation data) Photo Notes: Landscaping stone recovered in vehicle. Stone at Fluential’s home is similar inappearance. Finally, the white paint on the brick was analyzed using stable isotope analysis. The brick recovered at the scene had smeared white paint on it. A couple of pieces of brick in the back of the car had white paint on them. They…arrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning



