(a) Interpretation: The molecular structure of the given polyatomic ion by using VSEPR theory is to be predicted. Concept Introduction: VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules. VSEPR model is the extension of Lewis model. As the Lewis model is not able to explain the shape of the molecules. In terms of electron density it is given that both the bonding electrons as well as lone pair of electrons holds the shape of the molecule. The shape in VSEPR model gives specific angles between the bonds for the corresponding shape and these angles are known as bond angles.
(a) Interpretation: The molecular structure of the given polyatomic ion by using VSEPR theory is to be predicted. Concept Introduction: VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules. VSEPR model is the extension of Lewis model. As the Lewis model is not able to explain the shape of the molecules. In terms of electron density it is given that both the bonding electrons as well as lone pair of electrons holds the shape of the molecule. The shape in VSEPR model gives specific angles between the bonds for the corresponding shape and these angles are known as bond angles.
Solution Summary: The author explains that VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules.
The molecular structure of the given polyatomic ion by using VSEPR theory is to be predicted.
Concept Introduction:
VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules. VSEPR model is the extension of Lewis model. As the Lewis model is not able to explain the shape of the molecules. In terms of electron density it is given that both the bonding electrons as well as lone pair of electrons holds the shape of the molecule.
The shape in VSEPR model gives specific angles between the bonds for the corresponding shape and these angles are known as bond angles.
Interpretation Introduction
(b)
Interpretation:
The molecular structure of the given polyatomic ion by using VSEPR theory is to be predicted.
Concept Introduction:
VSEPR-theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules. VSEPR model is the extension of Lewis model. As the Lewis model is not able to explain the shape of the molecules. In terms of electron density it is given that both the bonding electrons as well as lone pair of electrons holds the shape of the molecule.
The shape in VSEPR model gives specific angles between the bonds for the corresponding shape and these angles are known as bond angles.
Interpretation Introduction
(c)
Interpretation:
The molecular structure of the given polyatomic ion by using VSEPR theory is to be predicted.
Concept Introduction:
VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules. VSEPR model is the extension of Lewis model. As the Lewis model is not able to explain the shape of the molecules. In terms of electron density it is given that both the bonding electrons as well as lone pair of electrons holds the shape of the molecule.
The shape in VSEPR model gives specific angles between the bonds for the corresponding shape and these angles are known as bond angles.
The table shows the tensile stress-strain values obtained for various
hypothetical metals. Based on this, indicate which is the most brittle
and which is the most tough (or most resistant).
Breaking strength Elastic modulus
Material Yield strength Tensile strength
Breaking strain
A
(MPa)
415
(MPa)
(MPa)
(GPa)
550
0.15
500
310
B
700
850
0.15
720
300
C
Non-effluence fracture
650
350
Please correct answer and don't used hand raiting
Chapter 12 Solutions
Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.