Mechanics of Materials, 7th Edition
7th Edition
ISBN: 9780073398235
Author: Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David F. Mazurek
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.3, Problem 7P
(a)
To determine
Find the modulus of resilience of the alloy.
(b)
To determine
The modulus of toughness of the alloy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Callister Problem 6.20: A brass alloy is known to have a yield strength of 275 MPa, a tensile
strength of 380 MPa, and an elastic modulus of 103 GPa. A cylindrical specimen of this alloy
12.7 mm in diameter and 250 mm long is stressed in tension and found to elongate 7.6 mm. On
the basis of the information given, is it possible to compute the magnitude of the load that is
necessary to produce this change in length? If so, calculate the load. If not, explain why.
5. Which one of the following is the correct definition of ultimate tensile strength, as derived from the
results of a tensile test on a metal specimen: (a) the stress encountered when the stress-strain curve
transforms from elastic to plastic behaviour, (b) the maximum load divided by the final area of the
specimen, (c) the maximum load divided by the original area of the specimen, or (d) the stress
observed when the specimen finally fails?
A cylindrical bar of metal having a diameter of 20.0 mm and a length of 190 mm is deformed elastically in tension with a force of 50800 N. Given that the elastic modulus and Poisson's ratio of the metal are 61.4 GPa and 0.34, respectively, determine the following:
(a) The amount by which this specimen will elongate in the direction of the applied stress.
(b) The change in diameter of the specimen. Indicate an increase in diameter with a positive number and a decrease with a negative number.
Chapter 11 Solutions
Mechanics of Materials, 7th Edition
Ch. 11.3 - Determine the modulus of resilience for each of...Ch. 11.3 - Determine the modulus of resilience for each of...Ch. 11.3 - Determine the modulus of resilience for each of...Ch. 11.3 - Determine the modulus of resilience for each of...Ch. 11.3 - The stress-strain diagram shown has been drawn...Ch. 11.3 - The stress-strain diagram shown has been drawn...Ch. 11.3 - Prob. 7PCh. 11.3 - Prob. 8PCh. 11.3 - Using E = 29 106 psi, determine (a) the strain...Ch. 11.3 - Using E = 200 GPa, determine (a) the strain energy...
Ch. 11.3 - A 30-in. length of aluminum pipe of...Ch. 11.3 - A single 6-mm-diameter steel pin B is used to...Ch. 11.3 - Prob. 13PCh. 11.3 - Prob. 14PCh. 11.3 - The assembly ABC is made of a steel for which E =...Ch. 11.3 - Show by integration that the strain energy of the...Ch. 11.3 - Prob. 17PCh. 11.3 - Prob. 18PCh. 11.3 - Prob. 19PCh. 11.3 - 11.18 through 11.21 In the truss shown, all...Ch. 11.3 - Prob. 21PCh. 11.3 - Each member of the truss shown is made of aluminum...Ch. 11.3 - Each member of the truss shown is made of aluminum...Ch. 11.3 - 11.24 through 11.27 Taking into account only the...Ch. 11.3 - Prob. 25PCh. 11.3 - 11.24 through 11.27 Taking into account only the...Ch. 11.3 - 11.24 through 11.27 Taking into account only the...Ch. 11.3 - Prob. 28PCh. 11.3 - Prob. 29PCh. 11.3 - Prob. 30PCh. 11.3 - 11.30 and 11.31 Using E = 200 GPa, determine the...Ch. 11.3 - Assuming that the prismatic beam AB has a...Ch. 11.3 - Prob. 33PCh. 11.3 - The design specifications for the steel shaft AB...Ch. 11.3 - Show by integration that the strain energy in the...Ch. 11.3 - The state of stress shown occurs in a machine...Ch. 11.3 - Prob. 37PCh. 11.3 - The state of stress shown occurs in a machine...Ch. 11.3 - Prob. 39PCh. 11.3 - Prob. 40PCh. 11.3 - Prob. 41PCh. 11.5 - A 5-kg collar D moves along the uniform rod AB and...Ch. 11.5 - The 18-lb cylindrical block E has a horizontal...Ch. 11.5 - The cylindrical block E has a speed v0 =16 ft/s...Ch. 11.5 - Prob. 45PCh. 11.5 - Prob. 46PCh. 11.5 - The 48-kg collar G is released from rest in the...Ch. 11.5 - Prob. 48PCh. 11.5 - Prob. 49PCh. 11.5 - Prob. 50PCh. 11.5 - Prob. 51PCh. 11.5 - The 2-kg block D is dropped from the position...Ch. 11.5 - The 10-kg block D is dropped from a height h = 450...Ch. 11.5 - Prob. 54PCh. 11.5 - A 160-lb diver jumps from a height of 20 in. onto...Ch. 11.5 - Prob. 56PCh. 11.5 - A block of weight W is dropped from a height h...Ch. 11.5 - 11.58 and 11.59 Using the method of work and...Ch. 11.5 - 11.58 and 11.59 Using the method of work and...Ch. 11.5 - 11.60 and 11.61 Using the method of work and...Ch. 11.5 - 11.60 and 11.61 Using the method of work and...Ch. 11.5 - 11.62 and 11.63 Using the method of work and...Ch. 11.5 - 11.62 and 11.63 Using the method of work and...Ch. 11.5 - Using the method of work and energy, determine the...Ch. 11.5 - Using the method of work and energy, determine the...Ch. 11.5 - The 20-mm diameter steel rod BC is attached to the...Ch. 11.5 - Torques of the same magnitude T are applied to the...Ch. 11.5 - Prob. 68PCh. 11.5 - The 20-mm-diameter steel rod CD is welded to the...Ch. 11.5 - The thin-walled hollow cylindrical member AB has a...Ch. 11.5 - 11.71 and 11.72 Each member of the truss shown has...Ch. 11.5 - 11.71 and 11.72 Each member of the truss shown has...Ch. 11.5 - Each member of the truss shown is made of steel...Ch. 11.5 - Each member of the truss shown is made of steel....Ch. 11.5 - Each member of the truss shown is made of steel...Ch. 11.5 - The steel rod BC has a 24-mm diameter and the...Ch. 11.9 - 11.77 and 11.78 Using the information in Appendix...Ch. 11.9 - 11.77 and 11.78 Using the information in Appendix...Ch. 11.9 - 11.79 through 11.82 For the beam and loading...Ch. 11.9 - 11.79 through 11.82 For the beam and loading...Ch. 11.9 - 11.79 through 11.82 For the beam and loading...Ch. 11.9 - 11.79 through 11.82 For the beam and loading...Ch. 11.9 - 11.83 through 11.85 For the prismatic beam shown,...Ch. 11.9 - 11.83 through 11.85 For the prismatic beam shown,...Ch. 11.9 - 11.83 through 11.85 For the prismatic beam shown,...Ch. 11.9 - 11.86 through 11.88 For the prismatic beam shown,...Ch. 11.9 - 11.86 through 11.88 For the prismatic beam shown,...Ch. 11.9 - 11.86 through 11.88 For the prismatic beam shown,...Ch. 11.9 - For the prismatic beam shown, determine the slope...Ch. 11.9 - For the prismatic beam shown, determine the slope...Ch. 11.9 - For the beam and loading shown, determine the...Ch. 11.9 - For the beam and loading shown, determine the...Ch. 11.9 - 11.93 and 11.94 For the beam and loading shown,...Ch. 11.9 - 11.93 and 11.94 For the beam and loading shown,...Ch. 11.9 - For the beam and loading shown, determine the...Ch. 11.9 - For the beam and loading shown, determine the...Ch. 11.9 - Prob. 97PCh. 11.9 - For the beam and loading shown, determine the...Ch. 11.9 - 11.99 and 11.100 For the truss and loading shown,...Ch. 11.9 - 11.99 and 11.100 For the truss and loading shown,...Ch. 11.9 - 11.101 and 11.102 Each member of the truss shown...Ch. 11.9 - 11.101 and 11.102 Each member of the truss shown...Ch. 11.9 - 11.103 and 11.104 Each member of the truss shown...Ch. 11.9 - 11.103 and 11 104 Each member of the truss shown...Ch. 11.9 - A uniform rod of flexural rigidity EI is bent and...Ch. 11.9 - For the uniform rod and loading shown and using...Ch. 11.9 - For the beam and loading shown and using...Ch. 11.9 - Two rods AB and BC of the same flexural rigidity...Ch. 11.9 - Three rods, each of the same flexural rigidity EI,...Ch. 11.9 - Three rods, each of the same flexural rigidity EI,...Ch. 11.9 - 11.111 through 11.115 Determine the reaction at...Ch. 11.9 - 11.111 through 11.115 Determine the reaction at...Ch. 11.9 - 11.111 through 11.115 Determine the reaction at...Ch. 11.9 - 11.111 through 11.115 Determine the reaction at...Ch. 11.9 - 11.111 through 11.115 Determine the reaction at...Ch. 11.9 - For the uniform beam and loading shown, determine...Ch. 11.9 - 11.117 through 11.120 Three members of the same...Ch. 11.9 - 11.117 through 11.120 Three members of the same...Ch. 11.9 - 11.117 through 11.120 Three members of the same...Ch. 11.9 - 11.117 through 11.120 Three members of the same...Ch. 11.9 - 11.121 and 11.122 Knowing that the eight members...Ch. 11.9 - 11.121 and 11.122 Knowing that the eight members...Ch. 11 - Rod AB is made of a steel for which the yield...Ch. 11 - Each member of the truss shown is made of steel...Ch. 11 - The ship at A has just started to drill for oil on...Ch. 11 - Collar D is released from rest in the position...Ch. 11 - Each member of the truss shown is made of steel...Ch. 11 - A block of weight W is placed in contact with a...Ch. 11 - Two solid steel shafts are connected by the gears...Ch. 11 - A 160-lb diver jumps from a height of 20 in. onto...Ch. 11 - For the prismatic beam shown, determine the slope...Ch. 11 - A disk of radius a has been welded to end B of the...Ch. 11 - A uniform rod of flexural rigidity EI is bent and...Ch. 11 - The steel bar ABC has a square cross section of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- To manufacture a piston with a circular cross section, an alloy steel bar is required whose length is fixed and has a value of 35 cm and must withstand a compression load of 5.2 tons. For its design, a safety factor of 4/5 is suggested with respect to the yield stress. The shear modulus for that alloy is 80 GPa.To know the resistance of this steel alloy, a compression test was carried out on a specimen of the same material, from this test the data table of stress against engineering deformation shown was obtained. Image 1 1) Calculate the increase in the diameter of the bar when the load is applied2) Define the Poisson's ratio and calculate its valuearrow_forwardTo manufacture a piston with a circular cross section, an alloy steel bar is required whose length is fixed and has a value of 35 cm and must withstand a compression load of 5.2 tons. For its design, a safety factor of 4/5 is suggested with respect to the yield stress. The shear modulus for that alloy is 80 GPa.To know the resistance of this steel alloy, a compression test was carried out on a specimen of the same material, from this test the data table of stress against engineering deformation shown was obtained. Image 1 1) Draw the stress versus strain diagram, naming axes and units2) Define modulus of elasticity and calculate its value3) Define yield effort and determine its valuearrow_forwardExperiments were conducted in a tension testing machine to evaluate the material properties of two metallic rods both having diameter equal to 10 mm. First rod having modulus of rigidity of the material equal to 400 tonnes/cm2 when subjected to an axial tensile force of 6 kN, the change in its diameter was observed to be 0.0018 cm. The value for the bulk modulus of the second metallic rod is same as that of the first one but modulus of elasticity 18% more. Based on the material properties calculate and compare the values of different moduli as well as Poisson’s ratio for both metallic rods. Justify your answer with reasons.arrow_forward
- A test piece is cut from a brass bar and subjected to a tensile test. With a load of 6.4 kN the test piece, of diameter 11.28 mm, extends by 0.04 mm over a gauge length of 50 mm. Determine: (i) the stress, (ii) the strain, (iii) the modulus of elasticity. (b) A spacer is turned from the same bar. The spacer has a diameter of 28 mm and a length of 250 mm, both measurements being made at 20~ The temperature of the spacer is then increased to 100~ the natural expansion being entirely prevented. Taking the coefficient of linear expansion to be 18 x 10-6/~ determine: (i) the stress in the spacer, (ii) the compressive load on the spacer. rC.G.] [64 MN/m 2, 0.0008, 80 GN/m 2, 115.2 MN/m 2, 71 kN.] Could you please answer thisquestion fully? If you use * could you please explain what you mean by it! Thank You :)arrow_forward8. A torsion test shows that the shear modulus of an aluminum specimen is 4.60 x 106 psi. When the same specimen is used in a tensile test, the modulus of elasticity is found to be 12.2 x 106 psi. Find Poisson's ratio for the specimen. * а. 0.40 О Б. 0.33 О с. 0.35 d. 0.30arrow_forwardCalculate the Young Modulus for a mild steel. When a rod of the steel is being tested under tensile load. The rod is 4.5m long with a diameter of diameter of 35mm and suffers an extension of 0.9mm under a load of 50,000N 259 x 106 N/m² 259GN/m² 55MN/m² 64GN/m²arrow_forward
- Under which of the conditions below is the generalized Hooke’s law applicable for use in analysis? a. When the material distorts due to any of the normal stresses b. When the material has a negative value for Poisson’s ratio c. When the material exceeds its proportional limit but still remains elastic d. When the material’s cross-section changes along one direction Which of the following statements is false about the Poisson’s ratio? a. It is a dimensionless quantity b. It relates the modulus of elasticity E and the modulus of rigidity G c. It has a single value for isotropic and homogeneous materials d. Its magnitude is equal to the negative ratio of the longitudinal strain to the lateral strain.arrow_forwardA specimen of titanium alloy is tested in torsion and the shear stress–strain diagram is shown in Fig.a. Determine the shear modulus G, the proportional limit, and the ultimate shear stress. Also, determine the maximum distance d that the top of a block of this material, shown in Fig. b, could be displaced horizontally if the material behaves elastically when acted upon by a shear force V. What is the magnitude of V necessary to cause this displacement?arrow_forwardAnswer this question.arrow_forward
- Q. 3. The flexural strength of a composite material reinforced with glass fibers is 45,000 psi, and the flexural modulus is 18 * 106 psi. A sample, which is 0.5 in. wide, 0.375 in. high, and 8 in. long, is supported between two rods 5 in. apart. Determine the force required to fracture the material and the deflection of the sample at fracture, assuming that no plastic deformation occurs.arrow_forwardQuestion 1 In the strength of material, the section of the body involved is taken into consideration unlike the mechanics of materials. What is the force applied to a material divided by the area? a. normal strain b. normal stress c. strength d. shear stress e. external force Question 2 An 5.40 meter steel bar is loaded with a tensile load of 250 KN, determine the diameter of the steel bar if the elongation is limited to 4.8mm and E = 200 GPa. Choose the nearest answer. a. 42.50 mm b. 45.00 mm c. 90.00 mm d. 37.20 mm e. 105 mmarrow_forwardA tensile stress is applied along the longitudinal axis of a cylindrical brass rod that has a diameter of 10 mm. Determine the magnitude of the load required to produce a change in diameter of 2.5 x 103 mm if the deformation is entirely elastic. Values of elastic modulus and Poisson's ratio for brass are 97 GPa and 0.34 respectively.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Failure Theories (Tresca, von Mises etc...); Author: The Efficient Engineer;https://www.youtube.com/watch?v=xkbQnBAOFEg;License: Standard youtube license