Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
9th Edition
ISBN: 9781260048667
Author: Yunus A. Cengel Dr.; Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.10, Problem 55P
A certain application requires maintaining the refrigerated space at −32°C. Would you recommend a simple refrigeration cycle with refrigerant-134a or a two-stage cascade refrigeration cycle with a different refrigerant at the bottoming cycle? Why?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I want to design an air-conditioning system that operates on the ideal vapor-compression refrigeration cycle with min temperature of the evaporator of 20°C. To increase the COPR of the cycle, I am considering replacing the refrigerant R134a as the working fluid with pure water. Do you think such a system is possible? If yes, explain why you would or would not recommend such a system.
Can I please get a in depth answer for this question. Thanks.
Required information
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
Consider a two-stage cascade refrigeration cycle with a flash chamber as shown in the figure with refrigerant-134a as the
working fluid. The evaporator temperature is -10°C and the condenser pressure is 1600 kPa. The refrigerant leaves the
condenser as a saturated liquid and is throttled to a flash chamber operating at 0.45 MPa. Part of the refrigerant
evaporates during this flashing process, and this vapor is mixed with the refrigerant leaving the low-pressure compressor.
The mixture is then compressed to the condenser pressure by the high-pressure compressor. The liquid in the flash
chamber is throttled to the evaporator pressure and cools the refrigerated space as it vaporizes in the evaporator. The
mass flow rate of the refrigerant through the low-pressure compressor is 0.11 kg/s. Assume that the refrigerant leaves the
evaporator as a saturated vapor and…
Required information
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
Consider a two-stage cascade refrigeration cycle with a flash chamber as shown in the figure with refrigerant-134a as the
working fluid. The evaporator temperature is -10°C and the condenser pressure is 1600 kPa. The refrigerant leaves the
condenser as a saturated liquid and is throttled to a flash chamber operating at 0.45 MPa. Part of the refrigerant
evaporates during this flashing process, and this vapor is mixed with the refrigerant leaving the low-pressure compressor.
The mixture is then compressed to the condenser pressure by the high-pressure compressor. The liquid in the flash
chamber is throttled to the evaporator pressure and cools the refrigerated space as it vaporizes in the evaporator. The
mass flow rate of the refrigerant through the low-pressure compressor is 0.11 kg/s. Assume that the refrigerant leaves the
evaporator as a saturated vapor and…
Chapter 11 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - It is proposed to use water instead of...
Ch. 11.10 - The COP of vapor-compression refrigeration cycles...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - An air conditioner using refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator operates on the ideal...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator uses refrigerant-134a as its...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 24PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - Prob. 28PCh. 11.10 - Bananas are to be cooled from 28C to 12C at a rate...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - The liquid leaving the condenser of a 100,000...Ch. 11.10 - Reconsider Prob. 1144E. What is the effect on the...Ch. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - A heat pump using refrigerant-134a as a...Ch. 11.10 - Reconsider Prob. 1148. What is the effect on the...Ch. 11.10 - Prob. 50PCh. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 54PCh. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Prob. 56PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Prob. 67PCh. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 70PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - An ideal gas refrigeration system operates with...Ch. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - An ideal gas refrigeration cycle uses air as the...Ch. 11.10 - Rework Prob. 1176E when the compressor isentropic...Ch. 11.10 - A gas refrigeration cycle with a pressure ratio of...Ch. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 84PCh. 11.10 - Prob. 85PCh. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - Prob. 99PCh. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 104PCh. 11.10 - Prob. 105PCh. 11.10 - Prob. 106PCh. 11.10 - Rooms with floor areas of up to 15 m2 are cooled...Ch. 11.10 - Consider a steady-flow Carnot refrigeration cycle...Ch. 11.10 - Consider an ice-producing plant that operates on...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - A refrigerator using refrigerant-134a as the...Ch. 11.10 - Prob. 117RPCh. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An aircraft on the ground is to be cooled by a gas...Ch. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Prob. 130RPCh. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 133FEPCh. 11.10 - Prob. 134FEPCh. 11.10 - Prob. 135FEPCh. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 139FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 141FEPCh. 11.10 - Prob. 142FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What are the approximate temperature ranges tor low-, medium-, and high-temperature refrigeration applications?arrow_forwardWhy is truck refrigeration designed to provide low- and medium-temperature refrigeration?arrow_forwardWhen a standard-efficiency air-cooled condenser is used, the condensing refrigerant will normally be higher in temperature than the entering air temperature.arrow_forward
- Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Consider a two-stage cascade refrigeration cycle with a flash chamber as shown in the figure with refrigerant-134a as the working fluid. The evaporator temperature is -10°C and the condenser pressure is 1600 kPa. The refrigerant leaves the condenser as a saturated liquid and is throttled to a flash chamber operating at 0.45 MPa. Part of the refrigerant evaporates during this flashing process, and this vapor is mixed with the refrigerant leaving the low-pressure compressor. The mixture is then compressed to the condenser pressure by the high-pressure compressor. The liquid in the flash chamber is throttled to the evaporator pressure and cools the refrigerated space as it vaporizes in the evaporator. The mass flow rate of the refrigerant through the low-pressure compressor is 0.11 kg/s. Assume that the refrigerant leaves the evaporator as a saturated vapor and…arrow_forwardThe required refrigeration capacity of a vapor compression refrigeration system (with R-22 as refrigerant) is 100 kW at –30oC evaporator temperature. Initially the system was single-stage with a single compressor compressing the refrigerant vapor from evaporator to a condenser operating at 1500 kPa pressure. Later the system was modified to a two- stage system operating on the cycle shown below. At the intermediate pressure of 600 kPa there is intercooling but no removal of flash gas. Find: a) Power requirement of the original single-stage system; b) Total power requirement of the two compressors in the revised two-stage system.arrow_forwardplease soonarrow_forward
- Please provide steps an solution.arrow_forwardquestion 51 An ideal vapor-compression refrigeration cycle that uses refrigerant-134a as its working fluid maintains a condenser at 800 kPa and the evaporator at -12 C. Determine this system’s COP and the amount of power required to service a 150 kW cooling load. What is the mass flow rate of refrigerant in kg/s to 4 decimal places? No need to add units to the answer.arrow_forwardThe required refrigeration capacity of a vapor compression refrigeration system (with R-22 as refrigerant) is 180,000 KJ/h at –30oC evaporator temperature. Initially the system was single stage with a single compressor compressing the refrigerant vapor from evaporator to a condenser operating at 1500 kPapressure. Later the system was modified to a two-stage system operating on the cycle shown below. At the intermediate pressure of 600 kPa there is intercooling but no removal of flash gas. Find a) Power requirement of the original single-stage system. b) Total power requirement of the two compressors in the revised two-stage system.arrow_forward
- Select a reasonable pressure for the evaporator and condenser in the following scenarios: A) A refrigerator that operates on the ideal vapor-compression cycle with refrigerant-134a is tomaintain the refrigerated space at −10°C while rejecting heat to the environment at 25°C.Select reasonable pressures for the evaporator and the condenser and explain your choice. B) A heat pump that operates on the ideal vapor compression cycle with refrigerant-134a isused to heat a house and maintain it at 25 °C by using underground water at 15 °C as theheat source. Select reasonable pressures for the evaporator and the condenser and explainyour choice.arrow_forwardThe figure below shows a two-stage vapor-compression refrigeration system with ammonia as the working fluid. The system uses a direct-contact heat exchanger to achieve intercooling. The evaporator has a refrigerating capacity of 40 tons and produces -30°F saturated vapor at its exit. In the first compressor stage, the refrigerant is compressed adiabatically to 140 lbf/in.², which is the pressure in the direct contact heat exchanger. Saturated vapor at 140 lbf/in.² enters the second compressor stage and is compressed adiabatically to 250 lbf/in.² Each compressor stage has an isentropic efficiency of 85%. There are no significant pressure drops as the refrigerant passes through the heat exchangers. Saturated liquid enters each expansion valve. Determine: Expansion valve 6- Condenser Direct contact heat exchanger Expansion valve (a) the ratio of mass flow rates, m3/my. (b) the power input to each compressor stage, in horsepower. (c) the coefficient of performance Comp Comp Evaporatorarrow_forwardREFRIGERATION ENGINEERING (!) USE SHAPIRO AND MORAN TABLEarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY