THERMODYNAMICS LLF W/ CONNECT ACCESS
9th Edition
ISBN: 9781264446889
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.10, Problem 45P
Reconsider Prob. 11–44E. What is the effect on the compressor power requirement when the vapor entering the compressor is superheated by 10°F and the condenser operates ideally?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a cooling machine that uses R-134a as a refrigerant and operates according
to the ideal vapor compression refrigeration cycle, the cooled environment is
kept at -30 °C and the condensation temperature entering the condenser at
18 °C with a flow rate of 0.25 kg/s and leaving the water at 26 °C. are given.
The refrigerant enters the condenser at a pressure of 1.2 MPa and 65 °C and
exits at 42 °C. The inlet condition of the compressor is 60 kPa and -34 ° C,
and it gains 450 W of heat from the environment during the compression
process. Accordingly, calculate (a) dryness fraction of the refrigerant in the
evaporator inlet (b) the cooling capacity (c) the COP value of the cooling
system.
TNB steam power plant in Genting Highlandsoperates on reheat Rankine cycleand has power net output of 50MW. Steam enters the turbine at 12MPa and 500 °C and it is cooled in the condenser at a pressure of 12kPa by running cooling water from the Bertam River through the tubesof condenser. Steam enters both stages of the turbine at b°C. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10 percent, show the cycle on a T-s diagram and determine;i.The pressure at which reheating takes place, ii.The thermal efficiency of the cycleandiii.Please justify how does the thermal efficiency of the cycle if the temperature to low turbine is increase to 600°C?
The boiler of a power steam cycle operates at 6000 kPa and the condenser at 50 kPa. At the
entrance to the turbine, the temperature is 500°C. The isentropic efficiency of the turbine is 90
percent, pressure and pump losses are negligible, and the water leaving the condenser is
subcooled by 6.3°C. The boiler is sized for a mass flow rate of 18 kg/s. You are asked to:
d.
Represent the cycle on P-v and T-s diagrams.
Compute the rate at which heat is added in the boiler.
Compute the power required to operate the pumps.
Determine the net power produced by the cycle.
Compute the thermal efficiency.
Chapter 11 Solutions
THERMODYNAMICS LLF W/ CONNECT ACCESS
Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - It is proposed to use water instead of...
Ch. 11.10 - The COP of vapor-compression refrigeration cycles...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - An air conditioner using refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator operates on the ideal...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator uses refrigerant-134a as its...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 24PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - Prob. 28PCh. 11.10 - Bananas are to be cooled from 28C to 12C at a rate...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - The liquid leaving the condenser of a 100,000...Ch. 11.10 - Reconsider Prob. 1144E. What is the effect on the...Ch. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - A heat pump using refrigerant-134a as a...Ch. 11.10 - Reconsider Prob. 1148. What is the effect on the...Ch. 11.10 - Prob. 50PCh. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 54PCh. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Prob. 56PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Prob. 67PCh. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 70PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - An ideal gas refrigeration system operates with...Ch. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - An ideal gas refrigeration cycle uses air as the...Ch. 11.10 - Rework Prob. 1176E when the compressor isentropic...Ch. 11.10 - A gas refrigeration cycle with a pressure ratio of...Ch. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 84PCh. 11.10 - Prob. 85PCh. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - Prob. 99PCh. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 104PCh. 11.10 - Prob. 105PCh. 11.10 - Prob. 106PCh. 11.10 - Rooms with floor areas of up to 15 m2 are cooled...Ch. 11.10 - Consider a steady-flow Carnot refrigeration cycle...Ch. 11.10 - Consider an ice-producing plant that operates on...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - A refrigerator using refrigerant-134a as the...Ch. 11.10 - Prob. 117RPCh. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An aircraft on the ground is to be cooled by a gas...Ch. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Prob. 130RPCh. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 133FEPCh. 11.10 - Prob. 134FEPCh. 11.10 - Prob. 135FEPCh. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 139FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 141FEPCh. 11.10 - Prob. 142FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 06.058 - COP of heat pump using refrigerant Refrigerant-134a enters the condenser of a residential heat pump at 800 kPa and 35°C at a rate of 0.018 kg/s and leaves at 800 kPa as a saturated liquid. The compressor consumes 1.250 kW of power. Use data from the tables. 800 kPa x=0 Он 800 kPa 35°C Condenser Je Expansion valve Compressor Evaporator Q₁ Problem 06.058.a - COP of heat pump using refrigerant Determine the COP of the heat pump. The COP of the heat pump isarrow_forwardThermodynamicarrow_forwardAn R134a compressor with a bore of 10 cm and stroke of 10 cm runs at 750 rpm . The clearance volume ratio is 0.04 . It runs between the evaporator and condenser temperatures of -6 ° C and 40 ° C respectively . The isentropic index of compression is 1.35 . ( a ) Determine the mass flow rate , refrigeration capacity , and work requirement . Compare the results of the isentropic work with that determined via superheat table .arrow_forward
- Saturated vapor Freon 12 refrigerant at 219.12 kPa leaves the evaporator and enters the compressor at -5 °C. The refrigerant leaves the condenser as saturated liquid at 25°C and enters the ex pansion valve at 22°C. Heat rejected from the condenser amount to 75 kW. The work to the compressor is 55.5 kJ/kg, while the heat lost from the compressor is 4.2 kJ/kg. If 1.15 kJ/kg of heat are lost in the piping between the compressor and condenser, cal culate the refrigeration capacity in tons.arrow_forwardCondenser a steam power plant that operates on a simple ideal ranking cycle and has a net power output of 22MW. Steam enters the turbine at 7Mpa and 450.05°C and is cooled in the condenser at a pressure of 10kpa by running cooling water from a lake through the tubes of the condenser at rate of 1750 kg/s. Determine the mess flow rates of steam through the steam turbine assuming that the cp of superheated steam is 2.9593kJ/kg.K.arrow_forwardA ordinary vapor-compression refrigeration using R-134A operates with a condenser tem- perature of -45°C and an evaporator a -10°C. The compressor is 80% efficient. (a) Determine the amount of cooling per kg of R-134A circulated (b) Determine the amount of heat rejected per kg of R-134A circulated (c) Determine the amount of work required per kg of R-134A circulated, and the COParrow_forward
- An R-12 refrigeration system using a single compressor serves three evaporators of 50, 30 and 20 tons capacity in parallel to each other with an evaporating temperatures of 0 C(hg = 351.447 KJ/kg), -5 C(hg = 349.321 KJ/kg) and -10 C(hg = 347.134 KJ/kg), respectively. If the condenser is maintained at 40 C(hf = 238.535 KJ/kg), compute the COP of the system. Enthalpy at the end of compression is at 378 KJ/kg.arrow_forwardA four cylinder, single-acting, V-type compressor with 8 cm bore and 10 cm stroke operates at 600 rpm. It is used in a R-12 compression system with condenser and evaporating pressure of 725.5 kPa and 189.5 kPa respectively. The compression is isentropic, the clearance is 2%, and there is no subcooling or superheating (before compression) of the refrigerant. Determine the refrigerating capacity of the system in kW if the actual volumetric efficiency is 95.44%arrow_forwardthermodynamicsarrow_forward
- Avapour compression refrigeration system using refrigerant F-12 is employed to produce 8640 kg of ice per day. The condensing and evaporating temperature of refrigerant are 48°C and -20°C respectively. Saturated liquid leaves the condenser and saturated vapour leaves the evaporator. Compression is isentropic, water at 35 C is used to form the ice. The temperature of ice should be-8°C. Heat flow into the orme tank from surroundings may be taken as 10% of total heat absorbed from water to form ice. Determine the power required to drive the compressor. Take specific heat of ice = 2,26 kJ/kg-K. Latent heat of Ice= 335 kJ/kg. Specific heat of water = 4.2 kJ/kg-K.arrow_forwardAn ideal vapor-compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to -5°C. This solution is pumped to various buildings for the purpose of air-conditioning. The refrigerant evaporates at -12.00°C with a total mass flow rate of 8.000 kg/s and condenses at 600 kPa. Determine the COP of the cycle and the total cooling load. (Take the required values from saturated refrigerant-134a tables.) The COP of the cycle is (Round the final answer to three decimal places.) and the total cooling load is kW.arrow_forwardA vapor compression cycle with R-134a is being used as its refrigerant. The refrigerant leaves the evaporator at -10 C and 120 kPa and it enters the condenser 1.0 MPa. Assuming there is a heat loss due to compression which is equal to 20 kJ/kg, and it has a cooling capacity of 75 tons of refrigeration, Determine the following: (a)heat rejected (b)cooling effect (c)work of compression (d) coefficient of performance (e)volume flow rate of refrigerant (f)compressor discharge temperaturearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License