EBK THERMODYNAMICS: AN ENGINEERING APPR
9th Edition
ISBN: 8220106796979
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.10, Problem 114RP
Repeat Prob. 11–112 assuming the compressor has an isentropic efficiency of 75 percent. Also, determine the rate of exergy destruction associated with the compression process in this case. Take T0 = 25°C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
To control an isentropic steam turbine, a throttle valve is placed in the steam line leading to the turbine inlet. Steam at 6 MPa and 600°C is supplied to the throttle inlet, and the turbine exhaust pressure is set at 40 kPa. What is the effect on the stream exergy at the turbine inlet when the throttle valve is partially closed such that the pressure at the turbine inlet is 2 MPa?
Ambient air at 100 kPa and 300 K is compressed isentropically in a steady-flow device to 0.8 MPa. Determine the exergy of the air at the compressor exit.
Argon gas expands from 3.5 MPa and 100°C to 500 kPa in an adiabatic expansion valve. For environment conditions of 100 kPa and 25°C, determine the exergy destruction during the process.
Chapter 11 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - It is proposed to use water instead of...
Ch. 11.10 - The COP of vapor-compression refrigeration cycles...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - An air conditioner using refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator operates on the ideal...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator uses refrigerant-134a as its...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 24PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - Prob. 28PCh. 11.10 - Bananas are to be cooled from 28C to 12C at a rate...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - The liquid leaving the condenser of a 100,000...Ch. 11.10 - Reconsider Prob. 1144E. What is the effect on the...Ch. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - A heat pump using refrigerant-134a as a...Ch. 11.10 - Reconsider Prob. 1148. What is the effect on the...Ch. 11.10 - Prob. 50PCh. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 54PCh. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Prob. 56PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Prob. 67PCh. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 70PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - An ideal gas refrigeration system operates with...Ch. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - An ideal gas refrigeration cycle uses air as the...Ch. 11.10 - Rework Prob. 1176E when the compressor isentropic...Ch. 11.10 - A gas refrigeration cycle with a pressure ratio of...Ch. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 84PCh. 11.10 - Prob. 85PCh. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - Prob. 99PCh. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 104PCh. 11.10 - Prob. 105PCh. 11.10 - Prob. 106PCh. 11.10 - Rooms with floor areas of up to 15 m2 are cooled...Ch. 11.10 - Consider a steady-flow Carnot refrigeration cycle...Ch. 11.10 - Consider an ice-producing plant that operates on...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - A refrigerator using refrigerant-134a as the...Ch. 11.10 - Prob. 117RPCh. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An aircraft on the ground is to be cooled by a gas...Ch. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Prob. 130RPCh. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 133FEPCh. 11.10 - Prob. 134FEPCh. 11.10 - Prob. 135FEPCh. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 139FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 141FEPCh. 11.10 - Prob. 142FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. Air is compressed steadily in an adiabatic compressor from 100 kPa and 300 K to 500 kPa and 400 K. Assuming the surrounding air to be at 25°C, determine the change in specific flow-exergy of air in this process, in kJ/kg. (Apply cold-air-standard assumptions) 50.994 151.78 100.963 100.79arrow_forwardRefrigerant-134a is condensed in a refrigeration system by rejecting heat to ambient air at 25°C. R-134a enters the condenser at 700 kPa and 50°C at a rate of 0.05 kg/s and leaves at the same pressure as a saturated liquid. Determine the rate of exergy destruction in the condenser.arrow_forwardRefrigerant 134a was added into the repaired compressor. Subsequently, the inlet of the compressor was conditioned at a pressure of 0.1 MPa and a temperature of 30 ° C. The compressor operating under these conditions has been measured as 1 MPa and 50 °C output address. In the meantime, your ambient temperature is 25 ºC and pressure is 100 kPa. Calculating the exergy change of the compressor pressurization process. In addition, under these conditions, determine the minimum amount of the compressor in the schedule for the program.arrow_forward
- Consider a steady-state steam turbine. Steam enters the turbine at a pressure of 12.5??? and a temperature of 700℃, and leaves the turbine at a pressure of 0.5???. If the isentropic efficiency of this turbine is 86%, determine its second law efficiency.arrow_forwardRequired information Problem 07.021 - DEPENDENT MULTI-PART PROBLEM - ASSIGN ALL PARTS NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. During the isothermal heat addition process of a Carnot cycle, 700 kJ of heat is added to the working fluid from a source at 400°C. Problem 07.021.c - Total entropy change for the process Determine the total entropy change for the process. The total entropy change for the process is KJ/K.arrow_forwardAs a car gets older, will its compression ratio change? How about the mean effective pressure?arrow_forward
- The A value is 8arrow_forwardConsider a fully reversible cycle consisting of isentropic compression, isothermal heat addition, isentropic expansion, and isothermal heat rejection. The heat addition is provided by a reservoir at a temperature of 823° C and the heat rejection is to a reservoir at a temperature of 17° C. What is the efficiency of the cycle? Give your answer to the nearest integer (e.g. 50.3% should be written as 50).arrow_forwardIf the higher and lower temperature limit of the Carnot cycle is 2500C and 200C, determine the work of expansion of the engine in each cycle. Use an air standard analysis.arrow_forward
- Air enters an adiabatic gas turbine at 3000 F and 120 psia. The air leaves at 60 psia. The turbine has an isentropic efficiency of 86 percent. The isentropic work is ws = 149.19 Btu/lbm. Assume the air has constant specific heat with Cp = 0.240 Btu/lbmR and k = 1.4. %3D %3D In the question that follows, select the answer that is closest to the true value. What is the actual work output of the turbine in units of Btu/lbm?arrow_forwardA certain Geothermal Power Plant shows that 1,700,000 kg/hr of pressurized ground water is available at 17.5MPa and 330°C. The water will be throttled to a pressure of 1.7MPa to produce wet steam and this mixture will be passed through a water separator to remove the water droplets so that saturated steam at 1.7MPa is available at the entrance of the Turbine. Other data are as follows: Discharge Pressure of turbine = 85kPa-Vac; Turbine Efficiency = 73%. Mechanical Loss = 2% of shaft power. Generator Efficiency = 95%. Determine the following: 1.The mass flow rate, in kg/min, of steam entering the turbine. a. 153,720 b . 76,858 c. 38,430 d. 19,200 e. 9,350 2. The maximum amount of power, in kW, that the plant can generate. a. 38,430 b. 19,200 c. 76,858 d. 9,350 e. 153,720arrow_forwardAmbient air at 100 kPa and 300 K is compressed isentropically in a steady-flow device to 0.8 MPa. Determine the exergy of compressed air after it is cooled to 300 K at 0.8 MPa pressure.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License