
Refrigerant-134a enters the condenser of a residential heat pump at 800 kPa and 50°C at a rate of 0.022 kg/s and leaves at 750 kPa subcooled by 3°C. The refrigerant enters the compressor at 200 kPa superheated by 4°C. Determine (a) the isentropic efficiency of the compressor, (b) the rate of heat supplied to the heated room, and (c) the COP of the heat pump. Also, determine (d) the COP and the rate of heat supplied to the heated room if this heat pump operated on the ideal vapor-compression cycle between the pressure limits of 200 and 800 kPa.
FIGURE P11–42
(a)

The isentropic efficiency of the compressor.
Answer to Problem 42P
The isentropic efficiency of the compressor is
Explanation of Solution
Show the T-s diagram for process as in Figure (1).
From Figure (1), write the specific enthalpy at state 3 is equal to state 4 due to throttling process.
Here, specific enthalpy at state 3 and 4 is
Express isentropic efficiency of the compressor.
Here, specific enthalpy at state 1, 2 and 2s is
Express the temperature at state 3.
Here, saturated temperature at pressure of
Express the temperature at state 1.
Here, saturated temperature at pressure of
Express quality at state 2s.
Here, specific entropy at saturated liquid and evaporation and
Express specific enthalpy at state 2s.
Here, specific enthalpy at saturated liquid and evaporation and
Conclusion:
Perform unit conversion of pressure at state 2 from
Refer Table A-13, “superheated refrigerant 134a”, and write the specific enthalpy at state 2 corresponding to pressure at state 2 of
Refer Table A-12, “saturated refrigerant-134a-pressure table” and write saturated temperature at pressure of
Substitute
Refer Table A-12, “saturated refrigerant-134a-pressure table” and write specific enthalpy at state 3 corresponding to pressure at state 3 of
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y is temperature at state 3 and specific enthalpy at state 3 respectively.
Show the specific enthalpy at state 3 corresponding to temperature as in Table (1).
Temperature at state 3 |
Specific enthalpy at state 3 |
26.69 | 88.82 |
26.06 | |
29.06 | 92.22 |
Substitute
Since the specific enthalpy at state 3 is equal to state 4 due to throttling process.
Refer Table A-12, “saturated refrigerant-134a-pressure table” and write saturated temperature at pressure of
Substitute
Refer Table A-12, “saturated refrigerant-134a-pressure table” and write specific enthalpy and entropy at state 1 corresponding to pressure at state 1 of
Here, specific entropy at state 1 is
The specific entropy at state 1 is equal to specific entropy at state 1.
Here, specific entropy at state 2 is
Refer Table A-12, “saturated refrigerant-134a-pressure table” and write the properties corresponding to pressure at state 2 of
Substitute
Substitute
Substitute
Hence, the isentropic efficiency of the compressor is
(b)

The rate of heat supplied to the heated room.
Answer to Problem 42P
The rate of heat supplied to the heated room is
Explanation of Solution
Express the rate of heat supplied to the heated room.
Here, mass flow rate is
Conclusion:
Substitute
Hence, the rate of heat supplied to the heated room is
(c)

The COP of the heat pump.
Answer to Problem 42P
The COP of the heat pump is
Explanation of Solution
Express the rate of work input.
Express coefficient of performance of heat pump.
Conclusion:
Substitute
Substitute
Hence, the COP of the heat pump is
(d)

The COP and the rate of heat supplied to the heated room.
Answer to Problem 42P
The COP and the rate of heat supplied to the heated room is
Explanation of Solution
Show the T-s diagram for ideal vapor compression cycle as in Figure (2).
From Figure (2), write the specific enthalpy at state 3 is equal to state 4 due to throttling process.
Express the coefficient of performance.
Express the rate of heat supplied to the heated room.
Conclusion:
Refer Table A-12, “saturated refrigerant-134a-pressure table”, and write the properties corresponding to initial pressure of
Here, specific entropy at state 1 is
Refer Table A-13, “superheated refrigerant 134a”, and write the specific enthalpy at state 2 corresponding to pressure at state 2 of
Show the specific enthalpy at state 2 corresponding to specific entropy as in Table (2).
Specific entropy at state 2 |
Specific enthalpy at state 2 |
0.9185 | 267.34 |
0.9379 | |
0.9481 | 276.46 |
Use Excels and substitute the values from Table (2) in Equation (VI) to get,
Refer Table A-12, “saturated refrigerant-134a-pressure table”, and write the specific enthalpy at state 3 corresponding to pressure at state 3
Here, specific enthalpy at saturated liquid is
Since the specific enthalpy at state 3 is equal to state 4 due to throttling process.
Substitute
Substitute
Hence, the COP and the rate of heat supplied to the heated room is
Want to see more full solutions like this?
Chapter 11 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- Problem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.arrow_forwardAn aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.arrow_forwardProblem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forward
- Problem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forwardI need part all parts please in detail (including f)arrow_forward
- Problem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forwardB5 Please help on the attached question.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





