Concept explainers
(a)
The free-fall acceleration on the surface of the satellite.
(a)
Answer to Problem 9P
The free-fall acceleration on the surface of the satellite is
Explanation of Solution
Write the expression for the force on the test object.
Here,
Write the expression for the gravitational force.
Here,
Equate equation (I) and (II) to solve for
Conclusion:
Substitute
Therefore, the free-fall acceleration on the surface of the satellite is
(b)
The time taken by the athlete to climb the cliff vertically.
(b)
Answer to Problem 9P
The time taken by the athlete to climb the cliff vertically is
Explanation of Solution
Write the expression for the equation of motion in vertical direction.
Here,
Set the acceleration in the vertical direction,
Use equation (V) in (IV) to solve for
If the object starts from the rest, the equation (VI) becomes,
Use equation (VII) to solve for
Conclusion:
Substitute
Therefore, the time taken by the athlete to climb the cliff vertically is
(c)
The distance covered by the athlete from the base of the vertical cliff to the icy surface of the satellite.
(c)
Answer to Problem 9P
The distance covered by the athlete from the base of the vertical cliff to the icy surface of the satellite is
Explanation of Solution
Write the expression for the equation of motion in horizontal direction
Here,
Conclusion:
Substitute
Therefore, the distance covered by the athlete from the base of the vertical cliff to the icy surface of the satellite is
(d)
The vector impact velocity of the athlete in climbing the cliff.
(d)
Answer to Problem 9P
The vector impact velocity of the athlete in climbing the cliff is
Explanation of Solution
Write the expression for the velocity vector.
Here, is the final velocity vector,
Write the expression for
Here,
Write the expression for the magnitude of the
Write the expression for the angle of the cliff making with the
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, the vector impact velocity of the athlete in climbing the cliff is
Want to see more full solutions like this?
Chapter 11 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- Since March 2006, NASAs Mars Reconnaissance Orbiter (MRO) has been in a circular orbit at an altitude of 316 km around Mars (Fig. P6.81). The acceleration due to gravity on the surface of the planet Mars is 0.376g, and its radius is 3.40 103 km. Assume the acceleration due to gravity at the satellite is the same as on the planets surface. a. What is MROs orbital speed? B. What is the period of the spacecrafts orbit? FIGURE P6.81arrow_forward(a) What is the acceleration due to gravity on the surface of the Moon? (b) On the surface of Mars? The mass of Mars is SW 6.4181023kg and its radius is 3.38106m .arrow_forwardModel the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forward
- (a) In order to keep a small satellite from drifting into a nearby asteroid, it is placed in orbit with a period of 3.02 hours and radius of 2.0 km. What is the mass of the asteroid? (b) Does this mass seem reasonable for the size of the orbit?arrow_forwardMuch of the mass of our Milky Way galaxy is concentrated in a central sphere of radius r = 2 kpc, where pc is the abbreviation for the unit parsec; 1 pc = 3.26 ly. Assume the Sun is in a circular orbit of radius r = 8.0 kpc around the central sphere of the Milky Way. The Suns orbital speed is approximately 220 km/s; assume the central sphere is at rest. a. Estimate the mass in the inner Milky Way. Report your answer in kilograms and in solar masses. b. What is the escape speed of the Milky Way? c. CHECK and THINK: Do you believe that stars in the Milky Way have been observed to have speeds of 500 km/s? Explain.arrow_forwardPlease don't provide handwritten solution .....arrow_forward
- A newly discovered planet X has a mass of 36.7 × 1023 kg and radius 2.47 × 106 m. What is g on this planet's surface, in m/s2?arrow_forwardHunting a black hole. Observations of the light from a certain star indicate that it is part of a binary (two-star) system. This visible star has orbital speed v = 280 km/s, orbital period T = 22.5 days, and approximate mass m₁ = 6.2M5, where Ms is the Sun's mass, 1.99 x 1030 kg. Assume that the visible star and its companion star, which is dark and unseen, are both in circular orbits (see the figure). Find the ratio of the approximate mass m2 of the dark star to Ms. Number i 0.16 m₁ Units No units m₂arrow_forwardA typical neutron star may have a mass equal to that of the Sun (m = 1.99x1030kg) but a radius of only 10 km. a) What is the gravitational acceleration at the surface of such a star? b) How fast would an object be moving if it fell from rest through a distance of 1.0 m on such a star?arrow_forward
- Voyager 1 and Voyager 2 surveyed the surface of Jupiter’s moon Io and photographed active volcanoes spewing liquid sulfur to heights of 70 km above the surface of this moon. Find the speed with which the liquid sulfur left the volcano. Io’s mass is 8.9 × 1022 kg, and its radius is 1 820 km.arrow_forwardConsider a planet that has two layers. There is a core, which has density 9.9 x 103 kg/m3 and radius 3.9 x 106 m, and then there is a crust, which has density 4.9 x 103 kg/m3 and sits on top of the core. The planet has a total radius of 16.9 x 106 m. Calculate the acceleration due to gravity at the surface of this planet, in N/kg. Use G = 6.7 x 10-11 N m2/ kg2. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forwardRick is an Aerospace Engineer at NASA’s Jet Propulsions Laboratory (JPL), and is designing the next mission to Pluto called “New Horizons 2: The Sequel". This time Rick plans to study Pluto's largest moon Charon. Charon has a mass of 1.586 ×1021 kg and a mean radius of 606 km, and might have a nitrogenous atmosphere (N2) just like Pluto. If, for a massive object to have an atmosphere its escape speed must be 12 times greater than the root-mean- square (rms) velocity of the gas (otherwise the gas will slowly leak away over time), what is the maximum temperature that Charon can have and still have a nitrogenous atmosphere? [Charon has a temperature of -281 °C = 55 K, day or night.]arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill