
Concept explainers
The earth’s gravitational field when the atmospheric pressure is zero and the outer space would start at the planet’s surface.

Answer to Problem 1OQ
Option (b) Yes, and it would be essentially the same as the current value.
Explanation of Solution
The air particles are attracted towards the earth’s atmosphere due to the gravitational acceleration and every particles possess some mass (significantly small), so that it exerts force on the surface of earth. As the force acts on a unit area, the result will be the atmospheric pressure acts on the earth’s surface. As the gravity is suddenly switched off, that will lead to the evaporation of atmosphere and the value of atmospheric pressure becomes zero. And it will not affect the gravitational field of the planet.
Write the expression for the gravitational field,
Here,
The magnitude of the gravitational field depends on the mass and the radius of the planet.
Conclusion:
Since the magnitude of the planet’s gravitational field is not depend on the atmospheric pressure, option (b) is correct.
The mass as well as the radius of the planet remains same the magnitude of
Switching off the gravity would let the atmosphere evaporate away, but the switching off the atmosphere has no effect in the planet’s gravitational field Thus, option (c) is incorrect.
The atmosphere will evaporate away but the magnitude of the gravitational field of the planet remains same Thus, option (d) is incorrect.
Switching off the gravity will led to the evaporation of the atmosphere and the atmospheric pressure is not depending on the magnitude of the field Thus, option (e) is incorrect.
Want to see more full solutions like this?
Chapter 11 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning





