
Concept explainers
(a)
To determine: The Earth’s orbital speed at aphelion.
(a)

Answer to Problem 55P
Answer: The Earth’s orbital speed at aphelion is
Explanation of Solution
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
By the conservation of
The angular momentum at perihelion is given as,
The angular momentum at aphelion is given as,
Substitute
Substitute
Conclusion:
Therefore, the Earth’s orbital speed at aphelion is
(b)
To determine: The kinetic and potential energy of the Earth-Sun system at perihelion.
(b)

Answer to Problem 55P
Answer: The kinetic of the Earth-Sun system at perihelion is
Explanation of Solution
Section 1;
To determine: The kinetic energy of the Earth-Sun system at perihelion.
Answer: The kinetic energy of the Earth-Sun system at perihelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the kinetic energy of the Earth-Sun system at perihelion is,
Substitute
Conclusion:
Therefore, the kinetic of the Earth-Sun system at perihelion is
Section 2;
To determine: The potential energy of the Earth-Sun system at perihelion.
Answer: The potential energy of the Earth-Sun system at perihelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the potential energy of the Earth-Sun system at perihelion is,
Substitute
Conclusion:
Therefore, the potential energy of the Earth-Sun system at perihelion is
(c)
To determine: The kinetic and potential energy of the Earth-Sun system at aphelion.
(c)

Answer to Problem 55P
Answer: The kinetic of the Earth-Sun system at aphelion is
Explanation of Solution
Section 1;
To determine: The kinetic energy of the Earth-Sun system at aphelion.
Answer: The kinetic energy of the Earth-Sun system at aphelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the kinetic energy of the Earth-Sun system at aphelion is,
Substitute
Conclusion:
Therefore, the kinetic of the Earth-Sun system at aphelion is
Section 2;
To determine: The potential energy of the Earth-Sun system at aphelion.
Answer: The potential energy of the Earth-Sun system at aphelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the potential energy of the Earth-Sun system at aphelion is,
Substitute
Conclusion:
Therefore, the potential energy of the Earth-Sun system at aphelion is
(d)
To determine: Whether the total energy of the Earth-Sun system constant.
(d)

Answer to Problem 55P
Answer: Yes, the total energy of the Earth-Sun system is remains constant.
Explanation of Solution
Section 1;
To determine: The total energy of the Earth-Sun system at aphelion.
Answer: The kinetic energy of the Earth-Sun system at aphelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the total energy of the Earth-Sun system at aphelion is,
Substitute
Section 2;
To determine: The total energy of the Earth-Sun system at perihelion.
Answer: The kinetic energy of the Earth-Sun system at perihelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the total energy of the Earth-Sun system at perihelion is,
Substitute
Mathematically proved, the sum of kinetic energy and potential energy of the Earth–Sun system at perihelion is identical to the sum of kinetic energy and potential energy of the Earth–Sun system at aphelion. So the total energy of the Earth-Sun system is constant.
Conclusion:
Therefore, yes, the total energy of the Earth-Sun system remains constant.
Want to see more full solutions like this?
Chapter 11 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





