Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 8OQ
(a)
To determine
Hydrogen atom in the ground state can absorb a photon of energy less than
(b)
To determine
Hydrogen atom in the ground state can absorb a photon of energy greater than
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What are the (a) energy, (b) magnitude of the momentum, and (c) wavelength of the photon emitted when a hydrogen atom
undergoes a transition from a state with n = 4 to a state with n = 2?
(a) Number
2.55
Units
eV
(b) Number
1.3617
Units
kg-m/s or N-s
(c) Number
4.865976353
Units
This answer has no units
a)Suppose a hydrogen molecule in its ground state is dissociated by absorbing a photon of ultraviolet light, causing the two hydrogen atoms to fly apart. What photon energy will give each atom a speed of 19 km/s? The mass of a hydrogen atom is 1.7×10^−27 kg
Express your answer to two significant figures and include the appropriate units.
An electron with kinetic energy of 12.50 eV hits a hydrogen atom in its ground state.
(a)Sketch the hydrogen energy level diagram, showing the transition to all possible excited state.
(b) Find all the possible kinetic energies of the outgoing electron.
(c) In the same sketch as part (a), draw all possible transitions when the atom relaxes and emits a photon.
(d) Find the wavelengths of all the possible emission photons.
Chapter 11 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 11.1 - A planet has two moons of equal mass. Moon 1 is in...Ch. 11.3 - An asteroid is in a highly eccentric elliptical...Ch. 11.4 - Prob. 11.3QQCh. 11.5 - Prob. 11.4QQCh. 11 - Prob. 1OQCh. 11 - The gravitational force exerted on an astronaut on...Ch. 11 - Prob. 3OQCh. 11 - Prob. 4OQCh. 11 - A system consists of five particles. How many...Ch. 11 - Suppose the gravitational acceleration at the...
Ch. 11 - Prob. 7OQCh. 11 - Prob. 8OQCh. 11 - Prob. 9OQCh. 11 - Rank the following quantities of energy from...Ch. 11 - Prob. 11OQCh. 11 - Prob. 12OQCh. 11 - Prob. 13OQCh. 11 - Prob. 14OQCh. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - In his 1798 experiment, Cavendish was said to have...Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - A 200-kg object and a 500-kg object are separated...Ch. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - A spacecraft in the shape of a long cylinder has a...Ch. 11 - (a) Compute the vector gravitational field at a...Ch. 11 - Prob. 13PCh. 11 - Two planets X and Y travel counterclockwise in...Ch. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Plasketts binary system consists of two stars that...Ch. 11 - As thermonuclear fusion proceeds in its core, the...Ch. 11 - Comet Halley (Fig. P11.21) approaches the Sun to...Ch. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - A space probe is fired as a projectile from the...Ch. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Let gM represent the difference in the...Ch. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Two stars of masses M and m, separated by a...Ch. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hydrogen atom in a state having a binding energy (the energy required to remove an electron) of -0.544 eV makes a transition to a state with an excitation energy (the difference between the energy of the state and that of the ground state) of 12.089 eV. (a) What is the energy of the photon emitted as a result of the transition? What are the (b) higher quantum number and (c) lower quantum number of the transition producing this emission? Use-13.60 eV as the binding energy of an electron in the ground state. (a) Number (b) Number i (c) Number i Units Units Unitsarrow_forwardConsider photons incident on a hydrogen atom. (a) A transition from the n = 4 to the n = 7 excited-state requires the absorption of a photon of what minimum energy? eV(b) A transition from the n = 1 ground state to the n = 6 excited state requires the absorption of a photon of what minimum energy? eVarrow_forward(A) The electron in a hydrogen atom makes a transition from a higher energy level to the ground level (n = 1). Find the wavelength and frequency of the emitted photon if the higher level is n = 2. (B) Suppose the atom is initially in the higher level corresponding to n = 5. What is the wavelength of the photon emitted when the atom drops from n = 5 to n = 1?(C) What is the radius of the electron orbit for a hydrogen atom for which n = 5? (D) How fast is the electron moving in a hydrogen atom for which n = 5?arrow_forward
- (a) of the following transitions in a hydrogen atom, which emits the photon of highest frequency? On=1 to n = 2 On = 2 ton = 1 On = 2 ton = 6 On = 6 to n = 2 (b) which emits the photon of lowest frequency? On=1 to n = 2 On = 2 to n = 1 On = 2 to n = 6 On = 6 ton = 2 (c) Which absorbs the photon of highest frequency? On=1 to n = 2 On=2 ton = 1 On = 2 to n = 6 On = 6 to n = 2arrow_forwardA hydrogen atom is in its ground state. Incident on the atom is a photon having an energy of 10.5 eV. What is the result? (a) The atom is excited to a higher allowed state. (b) The atom is ionized. (c) The photon passes by the atom without interaction.arrow_forwardAn electron of a hydrogen atom initially in the third excited state emits a photon and ends up in the ground state. (i) What is the energy in eV and in Joules of the emitted photon? (ii) What is the frequency of the emitted photon?arrow_forward
- A hydrogen atom emits a photon as it makes a transition from the n = 4 state to the n = 3 state. The energies of these two states are –0.9 eV and –1.5 eV, respectively.(a) What is the energy of the photon?(b) What is its frequency?arrow_forwardAn atom (not a hydrogen atom) absorbs a photon whose associated frequency is 6.2 * 1014 Hz. By what amount does the energy of the atom increase?arrow_forwardCan an electron in a hydrogen atom have a speed of 3.60 × 105 m/s? If so, what are its energy and the radius of its orbit? What about a speed of 3.65 × 105 m/s?arrow_forward
- What are the (a) energy, (b) magnitude of the momentum, and (c) wavelength of the photon emitted when a hydrogen atom undergoes a transition from a state with n = 3 to a state with n = 1?arrow_forwardA hydrogen atom initially in its ground state (n=1) absorbs a photon and ends up in the state for which n = 3. What is the energy of the absorbed photon?arrow_forwardA hydrogen atom is initially in the n = 6 state. It drops to the n = 2 state, emitting a photon in the process. (a) What is the energy (in ev) of the emitted photon? 3.022 ev (b) What is the frequency (in Hz) of the emitted photon? 7.293e14 v Hz (c) What is the wavelength (in um) of the emitted photon? 41.14 umarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill