Taxicab fares. In New York City, taxicabs change passengers $2.50 for entering a cab and then $050 for each one-fifth of a mile (or fraction thereof) traveled. (There are additional charge for slow traffic and idle times, but these are not considered in this problem.) If x presents the distance traveled in miles, then C ( x ) is the cost of the taxi fare, where C ( x ) = $ 2.50 , if x = 0 , C ( x ) = $ 3.00 , if 0 < x ≤ 0.2 , C ( x ) = $ 3.50 , if 0.2 < x ≤ 0.4 , C ( x ) = $ 4.00 , if 0.4 < x ≤ 0.6 , and so on. The graph of C is show below. (Source; New York City Taxi and Limousine Commission.) Using the graph of the taxicab fare function, find each of the following limits. if it exists. lim x → 0.25 − C ( x ) , lim x → 0.25 + C ( x ) , lim x → 0.25 C ( x )
Taxicab fares. In New York City, taxicabs change passengers $2.50 for entering a cab and then $050 for each one-fifth of a mile (or fraction thereof) traveled. (There are additional charge for slow traffic and idle times, but these are not considered in this problem.) If x presents the distance traveled in miles, then C ( x ) is the cost of the taxi fare, where C ( x ) = $ 2.50 , if x = 0 , C ( x ) = $ 3.00 , if 0 < x ≤ 0.2 , C ( x ) = $ 3.50 , if 0.2 < x ≤ 0.4 , C ( x ) = $ 4.00 , if 0.4 < x ≤ 0.6 , and so on. The graph of C is show below. (Source; New York City Taxi and Limousine Commission.) Using the graph of the taxicab fare function, find each of the following limits. if it exists. lim x → 0.25 − C ( x ) , lim x → 0.25 + C ( x ) , lim x → 0.25 C ( x )
Solution Summary: The author explains that taxicabs charge passengers 2.50 for entering a cab, and ifx=0 C(x)=3.
Taxicab fares. In New York City, taxicabs change passengers $2.50 for entering a cab and then $050 for each one-fifth of a mile (or fraction thereof) traveled. (There are additional charge for slow traffic and idle times, but these are not considered in this problem.) If x presents the distance traveled in miles, then
C
(
x
)
is the cost of the taxi fare, where
C
(
x
)
=
$
2.50
,
if
x
=
0
,
C
(
x
)
=
$
3.00
,
if
0
<
x
≤
0.2
,
C
(
x
)
=
$
3.50
,
if
0.2
<
x
≤
0.4
,
C
(
x
)
=
$
4.00
,
if
0.4
<
x
≤
0.6
,
and so on. The graph of C is show below. (Source; New York City Taxi and Limousine Commission.)
Using the graph of the taxicab fare function, find each of the following limits. if it exists.
lim
x
→
0.25
−
C
(
x
)
,
lim
x
→
0.25
+
C
(
x
)
,
lim
x
→
0.25
C
(
x
)
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
There are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and
use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three
investment?
STEP 1: The formula for compound interest is
A =
nt
= P(1 + − − ) n²,
where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to
A = Pert
Find r and n for each model, and use these values to write A in terms of t for each case.
Annual Model
r=0.10
A = Y(t) = 1150 (1.10)*
n = 1
Quarterly Model
r = 0.10
n = 4
A = Q(t) = 1150(1.025) 4t
Continuous Model
r=0.10
A = C(t) =…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.