For Exercises 15-17, consider lim x → − 7 f ( x ) , w h e r e f ( x ) = x 2 + 4 x − 21 x + 7 . Limit numerically. [ 1 . 1 ] a. Find the limit by completing the following input-output tables. x → − 7 − f ( x ) − 7.1 − 10.1 − 7.01 − 10.01 − 7.001 − 10.001 x → − 7 + f ( x ) − 6.9 − 9.9 − 6.99 − 9.99 − 6.999 − 9.999 b. Find lim x → − 7 − f ( x ) , lim x → − 7 + f ( x ) , and lim x → − 7 f ( x ) , if each exists.
For Exercises 15-17, consider lim x → − 7 f ( x ) , w h e r e f ( x ) = x 2 + 4 x − 21 x + 7 . Limit numerically. [ 1 . 1 ] a. Find the limit by completing the following input-output tables. x → − 7 − f ( x ) − 7.1 − 10.1 − 7.01 − 10.01 − 7.001 − 10.001 x → − 7 + f ( x ) − 6.9 − 9.9 − 6.99 − 9.99 − 6.999 − 9.999 b. Find lim x → − 7 − f ( x ) , lim x → − 7 + f ( x ) , and lim x → − 7 f ( x ) , if each exists.
Solution Summary: The author explains how to determine the limit by completing the input-output table.
3. f(7)
3. Find the domain of each of the following functions.
1
1. f(x)=2-6x+8
2. f(x)=√√7-x
4. A manufacturer has a monthly fixed cost of $40,000 and a production cost of $8 for each unit produced. The product sells for $12
per unit.
7. Evaluate the following limits and justify each step.
(a) lim (3x²+2x+1)
1
x²+4x-12
(b) lim
1 2
x² - 2x
t-√√3t+4
(c) lim
t-0 4-t
x²-6x+5
(d) lim
(e) lim
x 5 x-5
x→2
x²+2x+3
4u+1-3
(f) lim
u➡2 u-2
1
(g) lim
x-3
2
x 55 x
-
7x4 +4
(h) lim
xx 5x+2x-1
x+1
(i) lim
x²-2x+5
- 7x8+4x7 +5x
6. Given the following graph f(x).
(-2,2)
2-
-5
-3 -2
(-2,-1)
-1
(0,1)
-2-
1
(3,0)
2 3 4 5
(3,-1)
א
X
Compute each of the following.
(a) f(-2)
(b) lim f(x)
#129
(c) lim f(x)
*→12+
(d) lim f(x)
811H
(e) f(0)
(f) lim f(x)
8011
(m) Is the function continuous at x = -2,0,3? Why or why not?
(g) lim f(x)
+0x
(h) lim f(x)
x 0
(i) f(3)
(j) lim f(x)
x-3-
(k) lim f(x)
x+3+
(1) lim f(x)
#13
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.