FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 60CP
To determine
The reasons for the sudden drop in the drag coefficient when the boundary layer becomes turbulent.
Whether the turbulence is supposed to increase the coefficient of drag instead of the decreasing it.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A gas turbine cycle has two stages of compression, with an intercooler between the stages. Air enters the first stage at 100 kPa, 300 K. The pressure efficiency of 82%. Air exits the intercooler at 330 K. Calculate the temperature at the exit of each compressor stage and the total specific work required.
For problem 13, your answer should be the same as problem 12. Calculate the flow velocity and the heat transfer/area of the outer surfaces for both duct geometries to see the performance difference of the two designs.
One end of a thin uniform rod of mass m and length 31 rests against a smooth vertical wall. The other
end of the rod is attached by a string of length 1 to a fixed point O which is located a distance 21 from the
wall. A horizontal force of magnitude F₁ is applied to the lower end of the rod as shown. Assuming the
rod and the string remain in the same vertical plane perpendicular to the wall, find the angle 0 between
the rod and the wall at the position of static equilibrium.
Notes:
This quiz is going to walk you through a sequence of steps to do this. It won't give you the
answers, but it will hopefully get you to see how to approach problems like this so that you have
a working reference/template in the future.
This is actually a modified version of a problem from the textbook (6.3). Note that in that
problem, is not actually given. It has been introduced for convenience as we move through
solving the problem, and should not show up in the final answer. DO NOT DO PROBLEM 6.3. It is…
Chapter 11 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 11 - What is drag? What causes it? Why do we usually...Ch. 11 - Prob. 2CPCh. 11 - Which bicyclist is more likely to go faster: one...Ch. 11 - Prob. 4CPCh. 11 - Define the frontal area of a body subjected to...Ch. 11 - Define the planform area of a body subjected to...Ch. 11 - Prob. 7CPCh. 11 - What is the difference between streamlined and...Ch. 11 - Prob. 9CPCh. 11 - During flow over a given body, the drag force, the...
Ch. 11 - During flow over a given slender body such as a...Ch. 11 - What is terminal velocity? How is it determined?Ch. 11 - What is the difference between skin friction drag...Ch. 11 - What is the effect of surface roughness on the...Ch. 11 - Prob. 15CPCh. 11 - What is flow separation? What causes it? What is...Ch. 11 - Prob. 17CPCh. 11 - Consider laminar flow over a flat plate. How does...Ch. 11 - In general, how does the drag coefficient vary...Ch. 11 - Fairings are attached to the front and back of a...Ch. 11 - Prob. 21PCh. 11 - The resultant of the pressure and wall shear...Ch. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - A circular sign has a diameter of 50 cm and is...Ch. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - At highway speeds, about half of the power...Ch. 11 - A submarine can be treated as an ellipsoid with a...Ch. 11 - A 70-kg bicyclist is riding her 1 5-kg bicycle...Ch. 11 - A wind turbine with two or four hollow...Ch. 11 - During steady motion of a vehicle on a level road,...Ch. 11 - Prob. 37EPCh. 11 - A 0.80-m-diameter, 1 .2-rn-high garbage can is...Ch. 11 - An 8-mm-diameter plastic sphere whose density is...Ch. 11 - Prob. 40PCh. 11 - The drag coefficient of a vehicle increases when...Ch. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - During major windstorms, high vehicles such as RVs...Ch. 11 - What does the friction coefficient represent in...Ch. 11 - What fluid property is responsible for the...Ch. 11 - How is the average friction coefficient determined...Ch. 11 - Prob. 47EPCh. 11 - The local atmospheric pressure in Denver, Colorado...Ch. 11 - Prob. 50PCh. 11 - Prob. 51EPCh. 11 - Air at 25C and 1 atm is flowing over a long flat...Ch. 11 - Prob. 54PCh. 11 - During a winter day, wind at 70 km/h, 5C , and I...Ch. 11 - Prob. 56PCh. 11 - The forming section of a plastics plant puts out a...Ch. 11 - Prob. 58CPCh. 11 - Why is flow separation in flow over cylinders...Ch. 11 - Prob. 60CPCh. 11 - A 5-mm-diameter electrical transmission line is...Ch. 11 - A 1ong 5-cm-diameter steam pipe passes through...Ch. 11 - Consider 0.8-cm-diameter hail that is falling...Ch. 11 - Prob. 64EPCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67EPCh. 11 - One of the popular demonstrations in science...Ch. 11 - Prob. 69PCh. 11 - What is stall? What causes an airfoil to stall?...Ch. 11 - Prob. 71CPCh. 11 - Air is flowing past a symmetrical airfoil at zero...Ch. 11 - Both the lift and the drag of an airfoil increase...Ch. 11 - Prob. 74CPCh. 11 - Prob. 75CPCh. 11 - Air is flowing past a symmetrical airfoil at an...Ch. 11 - Prob. 77CPCh. 11 - Prob. 78CPCh. 11 - Prob. 79CPCh. 11 - Prob. 80CPCh. 11 - How do flaps affect the lift and the drag of...Ch. 11 - Prob. 82EPCh. 11 - Consider an aircraft that takes off at 260 km/h...Ch. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - A tennis ball with a mass of 57 and a diameter of...Ch. 11 - A small aircraft has a wing area of 40 m2, a lift...Ch. 11 - Prob. 89PCh. 11 - Consider a light plane that has a total weight of...Ch. 11 - A small airplane has a total mass of 1800 kg and a...Ch. 11 - An airplane has a mass of 48.000 k. a wins area of...Ch. 11 - Prob. 93EPCh. 11 - Prob. 94PCh. 11 - Prob. 95EPCh. 11 - A 2-zn-high, 4-zn-wide rectangular advertisement...Ch. 11 - 11-97 A plastic boat whose bottom surface can be...Ch. 11 - Prob. 99PCh. 11 - Prob. 100EPCh. 11 - A commercial airplane has a total mass of 150.000...Ch. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 107PCh. 11 - Prob. 108PCh. 11 - Prob. 109PCh. 11 - Prob. 110PCh. 11 - Prob. 111PCh. 11 - Prob. 113PCh. 11 - Prob. 115PCh. 11 - Prob. 116PCh. 11 - Prob. 117PCh. 11 - Prob. 118PCh. 11 - Prob. 119PCh. 11 - The region of flow trailing the body where the...Ch. 11 - Prob. 121PCh. 11 - Prob. 122PCh. 11 - Prob. 123PCh. 11 - Prob. 124PCh. 11 - Prob. 125PCh. 11 - Prob. 126PCh. 11 - An airplane has a total mass of 3.000kg and a wing...Ch. 11 - Prob. 128PCh. 11 - Write a report on the history of the reduction of...Ch. 11 - Write a report oil the flips used at the leading...Ch. 11 - Discuss how to calculate drag force a unsteady...Ch. 11 - Large commercial airplanes cruise at high...Ch. 11 - Many drivers turn off their air conditioners and...Ch. 11 - Consider the boundary layer growing on a flat...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- varrow_forward13.64 The shaft shown in Sketch h transfers power between the two pulleys. The tension on the slack side (right pul- ley) is 30% of that on the tight side. The shaft rotates at 900 rpm and is supported uniformly by a radial ball bearing at points 0 and B. Select a pair of radial ball bear- ings with 99% reliability and 40,000 hr of life. Assume Eq. (13.83) can be used to account for lubricant clean- liness. All length dimensions are in millimeters. Ans. Cmin = 42,400 N.arrow_forwardA 4 inch wide, 12 inch tall cross section beam is subjected to an internal shear of 5.5 kips. What is the maximum transverse shear stress in the beam in psi if this bending is about the x axis?arrow_forward
- A Brayton cycle produces 14 MW with an inlet state of 17°C, 100 kPa, and a compression ratio of 16:1. The heat added in the combustion is 960 kJ/kg. 0.7 MW of heat transferred from the turbine to the environment. What are the highest temperature and the mass flow rate of air? Assume cold air properties.arrow_forward. A gas turbine with air enters the compressor at 300 K, 1 bar, and exits from the turbine at 750 K, 1 bar. The thermal efficiency of the cycle is 40.1% and the back work ratio (BWR) is 0.4. Find the pressure ratio of the cycle. Assume variable specific heat.arrow_forwardA regenerative gas turbine power plant is shown in Fig. below. Air enters the compressor at 1 bar, 27°C with a mass flow rate of 0.562 kg/s and is compressed to 4 bar. The isentropic efficiency of the compressor is 80%, and the regenerator effectiveness is 90%. All the power developed by the high-pressure turbine is used to run the compressor. The low-pressure turbine provides the net power output. Each turbine has an isentropic efficiency of 87% and the temperature at the inlet to the highpressure turbine is 1200 K. Assume cold air properties, determine: a. The net power output, in kW. b. The thermal efficiency of the cycle.arrow_forward
- For tixed inlet state and exit pressure, use a cold-air standard analysis to show that the pressure ratio across the two compressor stages that gives nunimum work input is:=)) k/(k-1) when Ta Ti, where Ta is the temperature of the air entering the second stage compressor and Pi is the intercooler pressure. Put the suitable assumptionsarrow_forwardDerive the equation below ah ap ax 12μ ax, +( ah ap ay 12μ ay Where P P (x, y) is the oil film pressure. 1..ah 2 axarrow_forwardCan you determine the eignevalues by hand?arrow_forward
- Monthly exam 13 2021-2022 Power plant Time: 1.5 Hrs Q1. A The gas-turbine cycle shown in Fig. is used as an automotive engine. In the first turbine, the gas expands to pressure Ps, just low enough for this turbine to drive the compressor. The gas is then expanded through the second turbine connected to the drive wheels. The data for the engine are shown in the figure, and assume that all processes are ideal. Determine the intermediate pressure Ps, the net specific work output of the engine, and the mass flow rate through the engine. Find also the air temperature entering the burner T3 and the thermal efficiency of the engine. Exhaust Air intake Φ www Regenerator www Bumer Compressor Turbine Power turbine et 150 kW Wompressor P₁ = 100 kPa T₁ = 300 K PP₁ =60 P-100 kPa T₁ = 1600 K Q2. On the basis of a cold air-standard analysis, show that the thermal efficiency of an ideal regenerative gas turbine can be expressed as 77 = 1- where - () () гp is the compressor pressure ratio, and T₁ and…arrow_forwardI need to find m in R = mD from the image given. Do you really need to know what R and D is to find R. I was thinking geometrically we can find a relationship between R and D. D = R*cos(30). Then R = mD becomes m = R/D = 1/cos(30) = 1.1547. Is that correct?arrow_forwardQ1] B/ (16 Marks) To produce a lightweight epoxy part to provide thermal insulation. The available material are hollow glass beads for which the outside diameter is 1.6 mm and the wall thickness is 0.04 mm. Determine the weight and number of beads that must be added to the epoxy to produce a 0.5 kg of composite with a density of 0.65 g/cm³. The density of the glass is 2.5 g/cm³ and that of the epoxy is 1.25 g/cm³.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License