FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 124P
To determine
The drag force acting on the top side of the plate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air ( density :1,2 kg /m3 viscosity : 1.5x10-5 m2 /s ) flows over a flat plate of length 2,5 m and width 1 m at a test speed of 1,5 m/s. Determine the approximate magnitude of frictional force, F . (Flat plate is totally submerged in air and both surfaces of it are of same surface quality )ANSWER: F = 0,017955 N
Consider two different flows over geometrically similar airfoil shapes,one airfoil being twice the size of the other. The flow over the smallerairfoil has freestream properties given by T∞ = 200 K, ρ∞ = 1.23 kg/m3,and V∞ = 100 m/s. The flow over the larger airfoil is described byT∞ = 800 K, ρ∞ = 1.739 kg/m3, and V∞ = 200 m/s. Assume thatboth μ and a are proportional to T 1/2. Are the two flows dynamicallysimilar?
The friction coefficient for a boundary layer is
given by the expression:
Cf=
If the average flow velocity increases from an
original state to a new state by a factor of
4.66, calculate the ratio of the Cf over its value
at the original state.
1.32
√Rex
Chapter 11 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 11 - What is drag? What causes it? Why do we usually...Ch. 11 - Prob. 2CPCh. 11 - Which bicyclist is more likely to go faster: one...Ch. 11 - Prob. 4CPCh. 11 - Define the frontal area of a body subjected to...Ch. 11 - Define the planform area of a body subjected to...Ch. 11 - Prob. 7CPCh. 11 - What is the difference between streamlined and...Ch. 11 - Prob. 9CPCh. 11 - During flow over a given body, the drag force, the...
Ch. 11 - During flow over a given slender body such as a...Ch. 11 - What is terminal velocity? How is it determined?Ch. 11 - What is the difference between skin friction drag...Ch. 11 - What is the effect of surface roughness on the...Ch. 11 - Prob. 15CPCh. 11 - What is flow separation? What causes it? What is...Ch. 11 - Prob. 17CPCh. 11 - Consider laminar flow over a flat plate. How does...Ch. 11 - In general, how does the drag coefficient vary...Ch. 11 - Fairings are attached to the front and back of a...Ch. 11 - Prob. 21PCh. 11 - The resultant of the pressure and wall shear...Ch. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - A circular sign has a diameter of 50 cm and is...Ch. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - At highway speeds, about half of the power...Ch. 11 - A submarine can be treated as an ellipsoid with a...Ch. 11 - A 70-kg bicyclist is riding her 1 5-kg bicycle...Ch. 11 - A wind turbine with two or four hollow...Ch. 11 - During steady motion of a vehicle on a level road,...Ch. 11 - Prob. 37EPCh. 11 - A 0.80-m-diameter, 1 .2-rn-high garbage can is...Ch. 11 - An 8-mm-diameter plastic sphere whose density is...Ch. 11 - Prob. 40PCh. 11 - The drag coefficient of a vehicle increases when...Ch. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - During major windstorms, high vehicles such as RVs...Ch. 11 - What does the friction coefficient represent in...Ch. 11 - What fluid property is responsible for the...Ch. 11 - How is the average friction coefficient determined...Ch. 11 - Prob. 47EPCh. 11 - The local atmospheric pressure in Denver, Colorado...Ch. 11 - Prob. 50PCh. 11 - Prob. 51EPCh. 11 - Air at 25C and 1 atm is flowing over a long flat...Ch. 11 - Prob. 54PCh. 11 - During a winter day, wind at 70 km/h, 5C , and I...Ch. 11 - Prob. 56PCh. 11 - The forming section of a plastics plant puts out a...Ch. 11 - Prob. 58CPCh. 11 - Why is flow separation in flow over cylinders...Ch. 11 - Prob. 60CPCh. 11 - A 5-mm-diameter electrical transmission line is...Ch. 11 - A 1ong 5-cm-diameter steam pipe passes through...Ch. 11 - Consider 0.8-cm-diameter hail that is falling...Ch. 11 - Prob. 64EPCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67EPCh. 11 - One of the popular demonstrations in science...Ch. 11 - Prob. 69PCh. 11 - What is stall? What causes an airfoil to stall?...Ch. 11 - Prob. 71CPCh. 11 - Air is flowing past a symmetrical airfoil at zero...Ch. 11 - Both the lift and the drag of an airfoil increase...Ch. 11 - Prob. 74CPCh. 11 - Prob. 75CPCh. 11 - Air is flowing past a symmetrical airfoil at an...Ch. 11 - Prob. 77CPCh. 11 - Prob. 78CPCh. 11 - Prob. 79CPCh. 11 - Prob. 80CPCh. 11 - How do flaps affect the lift and the drag of...Ch. 11 - Prob. 82EPCh. 11 - Consider an aircraft that takes off at 260 km/h...Ch. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - A tennis ball with a mass of 57 and a diameter of...Ch. 11 - A small aircraft has a wing area of 40 m2, a lift...Ch. 11 - Prob. 89PCh. 11 - Consider a light plane that has a total weight of...Ch. 11 - A small airplane has a total mass of 1800 kg and a...Ch. 11 - An airplane has a mass of 48.000 k. a wins area of...Ch. 11 - Prob. 93EPCh. 11 - Prob. 94PCh. 11 - Prob. 95EPCh. 11 - A 2-zn-high, 4-zn-wide rectangular advertisement...Ch. 11 - 11-97 A plastic boat whose bottom surface can be...Ch. 11 - Prob. 99PCh. 11 - Prob. 100EPCh. 11 - A commercial airplane has a total mass of 150.000...Ch. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 107PCh. 11 - Prob. 108PCh. 11 - Prob. 109PCh. 11 - Prob. 110PCh. 11 - Prob. 111PCh. 11 - Prob. 113PCh. 11 - Prob. 115PCh. 11 - Prob. 116PCh. 11 - Prob. 117PCh. 11 - Prob. 118PCh. 11 - Prob. 119PCh. 11 - The region of flow trailing the body where the...Ch. 11 - Prob. 121PCh. 11 - Prob. 122PCh. 11 - Prob. 123PCh. 11 - Prob. 124PCh. 11 - Prob. 125PCh. 11 - Prob. 126PCh. 11 - An airplane has a total mass of 3.000kg and a wing...Ch. 11 - Prob. 128PCh. 11 - Write a report on the history of the reduction of...Ch. 11 - Write a report oil the flips used at the leading...Ch. 11 - Discuss how to calculate drag force a unsteady...Ch. 11 - Large commercial airplanes cruise at high...Ch. 11 - Many drivers turn off their air conditioners and...Ch. 11 - Consider the boundary layer growing on a flat...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Imagine a plate 1 m long by 1 m wide at a temperature of 80 °C. Water is passed over its surface at a speed of 1 m/s with a temperature of 40 °C.Calculate the heat dissipated by the plate. Assume the following properties of water at 60 °C: k=0.651 W/mK, Pr=3.02, v =0.478 x 10-6 m²/s.arrow_forwardA submarine can be treated as an ellipsoid with a diameter of 5 m and a length of 25 m. The submarine is cruising horizontally and steadily at 65 km/h in seawater (p = 1025 kg/m³.p = 0.00108 Ns/m2). Determine: The Reynolds number for the submarine and state whether the flow is in the laminar or turbulent regime. ii. The drag force on the submarine. iii. The power required to overcome the drag force. To surface, a total lift force of 1000 kN is required from a pair of NACA 0012 hydroplanes. Each hydroplane has a chord length of 1 m and a iv. span of 3 m. What angle of attack should be used?arrow_forwardA 0.8-m-outer-diameter spherical tank is completely submerged in a flowing water stream at a velocity of 2.5 m/s. Calculate the drag force acting on the tank. (Water properties are: ? = 998.0 kg/m3, ? = 1.002 × 10−3 kg/m·s.) (a) 878 N (b) 627 N (c) 545 N (d ) 356 N (e) 220 Narrow_forward
- Consider an aerofoil in a free stream with a velocity of 50 m/s at standard sea-level conditions. At a point on the aerofoil, the pressure is 9.5 x 104 N/m². What is the pressure coefficient at this point?arrow_forwardWhen taking data for the golf balls I usually run the wind tunnel at a velocity of 75 ft/sec. The diameter of the golf balls is 1.680 inches. Assuming standard temperature and pressure for the air calculate the Reynolds number for the golf ball. Foop = C₂ (2) (P)(√²)(A) Fadap со C₁ = 2.5 /ff3arrow_forwardFastarrow_forward
- Fluid mechanicsarrow_forwardAssume the critical Reynolds number for the flow to be considered as laminar over a flat plate is 5 × 105. Determine the distance from the leading edge at which transition will occur for atmospheric air when u∞ = 1 m/s and T∞ = 27 °C. Use T∞ to find relevant properties in Table A.4.arrow_forwardEngine oil at 60 °C flows over the upper surface of a 5 m long flat plate which temperature is 20 °C with a velocity of 2 m/s. Determine the total drag force and the rate of heat transfer per unit width of the entire plate. Given width for the plate is 1 m. Given the next scenario; Justify the value of x (m²/s) to get the turbulent flow for the new total drag force and the rate of heat transfer per unit width of the plate. Discuss your idea.arrow_forward
- It is second asking. Please let me know correct answer. v is not 11.738m/sarrow_forwardThroughout, take the acceleration due to gravity to be 10 m/s? and water to have density of 1000 kg/m³. Question 1 A large block of mass 1100 kg is towed at a constant speed UB up an inclined plane at 6° to the horizontal, as shown in Fig. 1. The towing force applied on the block has magnitude 1165 N. The block slides over an oil film with a constant thickness of 3 mm. The oil has density 900 kg/m and dynamic viscosity 0.1 Pa.s. The area of the block in contact with the oil is 15 m2. UB F=1165 N m=1100 kg oil film 3 mm contact area: 15 m² 6° Figure 1 (i) Sketch, with appropriate labels, the forces acting on the block in the direction parallel to the inclined plane. (ii) Determine the magnitude of the drag force acting on the bottom surface of the block. (iii) Assuming a laminar velocity profile in the oil film, determine the speed of the block Ug. (iv) Verify that the flow of oil is laminar as assumed in (iii). (v) Determine the power requirement to tow the block. (vi) To reduce the…arrow_forward(a) A space of 25 mm width between two surfaces filled with SAE 30 western lubricating oil at 250C (u = 0.18 Ns/m?). Plot the velocity profile and determine the force which is required to drag a thin plate (speed = 0.4 m/s) of 0.35 m? area located at a distance of 10 mm from the top plate i. If the surfaces are fixed ii. If the top surface is fixed and bottom surface is moving at a constant velocity of 0.1 m/s in the direction of the plate = 4 = iii. If the top surface is fixed and bottom surface is moving at a constant velocity of 0.1 m/s in the opposite direction of the platearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License