EBK CHEMISTRY: AN ATOMS FIRST APPROACH
2nd Edition
ISBN: 9780100552234
Author: ZUMDAHL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 31E
The decomposition of nitrosyl chloride was studied:
2NOCl(g) ⇌ 2NO(g) + Cl2(g)
The following data were obtained where
[NOCl]0(molecules/cm3) | Initial Rate (molecules/cm3 · s) |
3.0 × 1016 | 5.98 × 104 |
2.0 × 1016 | 2.66 × 104 |
1.0 × 1016 | 6.64 × 103 |
4.0 × 1016 | 1.06 × 105 |
a. What is the rate law?
b. Calculate the value of the rate constant.
c. Calculate the value of the rate constant when concentrations are given in moles per liter.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 11 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
Ch. 11 - Define reaction rate. Distinguish between the...Ch. 11 - Distinguish between the differential rate law and...Ch. 11 - One experimental procedure that can be used to...Ch. 11 - The initial rate for a reaction is equal to the...Ch. 11 - Prob. 5RQCh. 11 - Derive expressions for the half-life of zero-,...Ch. 11 - Prob. 7RQCh. 11 - Prob. 8RQCh. 11 - Prob. 9RQCh. 11 - Give the Arrhenius equation. Take the natural log...
Ch. 11 - Why does a catalyst increase the rate of a...Ch. 11 - Prob. 1ALQCh. 11 - Describe at least two experiments you could...Ch. 11 - Prob. 3ALQCh. 11 - Prob. 4ALQCh. 11 - Consider the following statements: In general, the...Ch. 11 - For the reaction A + B C, explain at least two...Ch. 11 - Prob. 7ALQCh. 11 - Prob. 8ALQCh. 11 - Prob. 9ALQCh. 11 - Prob. 10QCh. 11 - Prob. 11QCh. 11 - The plot below shows the number of collisions with...Ch. 11 - For the reaction O2(g)+2NO(g)2NO2(g) the observed...Ch. 11 - Prob. 14QCh. 11 - Prob. 15QCh. 11 - Prob. 16QCh. 11 - Prob. 17QCh. 11 - Prob. 18QCh. 11 - Prob. 19QCh. 11 - Consider the following energy plots for a chemical...Ch. 11 - Prob. 21QCh. 11 - Would the slope of a ln(k) versus 1/T plot (with...Ch. 11 - Prob. 23ECh. 11 - In the Haber process for the production of...Ch. 11 - At 40C, H2O2 (aq) will decompose according to the...Ch. 11 - Consider the general reaction aA+bBcC and the...Ch. 11 - What are the units for each of the following if...Ch. 11 - The rate law for the reaction...Ch. 11 - The reaction 2NO(g)+Cl2(g)2NOCl(g) was studied at...Ch. 11 - The reaction 2I-(aq)+S2O82-(aq)I2(aq)+2SO42-(aq)...Ch. 11 - The decomposition of nitrosyl chloride was...Ch. 11 - The following data were obtained for the gas-phase...Ch. 11 - The reaction I(aq)+OCl(aq)IO(aq)+Cl(aq) was...Ch. 11 - The reaction 2NO(g)+O2(g)2NO2(g) was studied. and...Ch. 11 - The rote of the reaction between hemoglobin (Hb)...Ch. 11 - The following data were obtained for the reaction...Ch. 11 - The decomposition of hydrogen peroxide was...Ch. 11 - Prob. 38ECh. 11 - The rate of the reaction NO2(g)+CO(g)NO(g)+CO2(g)...Ch. 11 - A certain reaction has the following general form:...Ch. 11 - The decomposition of ethanol (C2H5OH) on an...Ch. 11 - Prob. 42ECh. 11 - The dimerization of butadiene 2C4H6(g)C8H12(g) was...Ch. 11 - The rate of the reaction O(g)+NO2(g)NO(g)+O2(g)...Ch. 11 - Experimental data for the reaction A2B+C have been...Ch. 11 - Prob. 46ECh. 11 - The reaction AB+C is known to be zero order in A...Ch. 11 - The decomposition of hydrogen iodide on finely...Ch. 11 - Prob. 49ECh. 11 - A first-order reaction is 75.0% complete in 320....Ch. 11 - The rate law for the decomposition of phosphine...Ch. 11 - DDT (molar mass = 354.49 g/mol) was a widely used...Ch. 11 - Consider the following initial rate data for the...Ch. 11 - Prob. 54ECh. 11 - Prob. 55ECh. 11 - Prob. 56ECh. 11 - You and a coworker have developed a molecule...Ch. 11 - Consider the hypothetical reaction A+B+2C2D+3E...Ch. 11 - Prob. 59ECh. 11 - A possible mechanism for the decomposition of...Ch. 11 - A proposed mechanism for a reaction is...Ch. 11 - The mechanism for the gas-phase reaction of...Ch. 11 - For the following reaction profile, indicate a....Ch. 11 - Draw a rough sketch of the energy profile for each...Ch. 11 - Prob. 65ECh. 11 - The activation energy for some reaction...Ch. 11 - The rate constant for the gas-phase decomposition...Ch. 11 - The reaction (CH3)3CBr+OH(CH3)3COH+Br in a certain...Ch. 11 - Prob. 69ECh. 11 - A first-order reaction has rate constants of 4.6 ...Ch. 11 - Prob. 71ECh. 11 - Prob. 72ECh. 11 - Which of the following reactions would you expect...Ch. 11 - Prob. 74ECh. 11 - One mechanism for the destruction of ozone in the...Ch. 11 - One of the concerns about the use of Freons is...Ch. 11 - Prob. 77ECh. 11 - The decomposition of NH3 to N2 and H2 was studied...Ch. 11 - The decomposition of many substances on the...Ch. 11 - Prob. 80ECh. 11 - Prob. 81ECh. 11 - Prob. 82ECh. 11 - Consider the following representation of the...Ch. 11 - The reaction H2SeO3(aq) + 6I-(aq) + 4H+(aq) Se(s)...Ch. 11 - Prob. 85AECh. 11 - Sulfuryl chloride (SO2Cl2) decomposes to sulfur...Ch. 11 - For the reaction 2N2O5(g)4NO2(g)+O2(g) the...Ch. 11 - Prob. 88AECh. 11 - Cobra venom helps the snake secure food by binding...Ch. 11 - Iodomethane (CH3I) is a commonly used reagent in...Ch. 11 - Experiments during a recent summer on a number of...Ch. 11 - The activation energy of a certain uncatalyzed...Ch. 11 - Consider the reaction 3A+B+CD+E where the rate law...Ch. 11 - The thiosulfate ion (S2O32) is oxidized by iodine...Ch. 11 - The reaction A(aq)+B(aq)products(aq) was studied,...Ch. 11 - A certain substance, initially present at 0.0800...Ch. 11 - A reaction of the form aAProducts gives a plot of...Ch. 11 - A certain reaction has the form aAProducts At a...Ch. 11 - Which of the following statement(s) is( are) true?...Ch. 11 - Consider the hypothetical reaction A2(g) + B2(g) ...Ch. 11 - Experiments have shown that the average frequency...Ch. 11 - Consider a reaction of the type aA products, in...Ch. 11 - A study was made of the effect of the hydroxide...Ch. 11 - Two isomers (A and B) of a given compound dimerize...Ch. 11 - Prob. 105CPCh. 11 - Most reactions occur by a series of steps. The...Ch. 11 - Prob. 107CPCh. 11 - The decomposition of NO2(g) occurs by the...Ch. 11 - The following data were collected in two studies...Ch. 11 - Prob. 110CPCh. 11 - Prob. 111CPCh. 11 - Prob. 112CPCh. 11 - Sulfuryl chloride undergoes first-order...Ch. 11 - Upon dissolving InCl(s) in HCl, In+(aq) undergoes...Ch. 11 - The decomposition of iodoethane in the gas phase...Ch. 11 - Consider the following reaction: CH3X+YCH3Y+X At...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) was studied at 904 C, and the data in the table were collected. (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant for the reaction. (d) Find the rate of appearance of N2 at the instant when [NO] = 0.350 mol/L and [H] = 0.205 mol/L.arrow_forwardNitrogen monoxide reacts with hydrogen as follows: 2NO(g)+H2(g)N2O(g)+H2O(g) The rate law is [H2]/t = k[NO]2[H2], where k is 1.10 107 L2/(mol2 s) at 826C. A vessel contains NO and H2 at 826C. The partial pressures of NO and H2 are 144 mmHg and 315 mmHg, respectively. What is the rate of decrease of partial pressure of NO? See Problem 13.151.arrow_forwardAmmonium cyanate, NH4NCO, rearranges in water to give urea, (NH2)2CO. NH4NCO(aq) (NH2)2CO(aq) Using the data in the table: (a) Decide whether the reaction is first-order or second-order. (b) Calculate k for this reaction. (c) Calculate the half-life of ammonium cyanate under these conditions. (d) Calculate the concentration of NH4NCO after 12.0 hours.arrow_forward
- The reaction H2SeO3(aq) + 6I-(aq) + 4H+(aq) Se(s) + 2I-3(aq) + 3H2O(l) was studied at 0C, and the following data were obtained: [H2SeO3]0 (mol/L) [H+]0 (mol/L) [I]0(mol/L) Initial Rate (mol/L s) 1.0 104 2.0 102 2.0 102 1.66 107 2.0 104 2.0 102 2.0 10-2 3.33 107 3.0 104 2.0 102 2.0 102 4.99 107 1.0 104 4.0 102 2.0 102 6.66 107 1.0 104 1.0 102 2.0 102 0.42 107 1.0 104 2.0 102 4.0 102 13.2 107 1.0 104 1.0 102 4.0 102 3.36 107 These relationships hold only if there is a very small amount of I3 present. What is the rate law and the value of the rate constant? (Assumethatrate=[H2SeO3]t)arrow_forwardThe reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a role in the formation of nitrogen dioxide in automobile engines. Suppose that a series of experiments measured the rate of this reaction at 500 K and produced the following data; [NO] (mol L ’) [OJ (mol L 1) Rate = -A[NO]/Af (mol L_1 s-1) 0.002 0.005 8.0 X 10"'7 0.002 0.010 1.6 X 10-'6 0.006 0.005 2.4 X IO-'6 Derive a rate law for the reaction and determine the value of the rate constant.arrow_forwardThe thermal decomposition of diacetylene, C4H2, was studied at 950 C. Use the following data (K. C. Hou and H. B. Palmer, Journal of Physical Chemistry. Vol. 60, p. 858, 1965) to determine the order of the reaction.arrow_forward
- 11.32 The following experimental data were obtained for the reaction 2A + 3 B—C + 2D [A](mol L 1) [B](mol L ’) Rate = A(C]/Af (mol L-1 s-1) 0.127 0.15 0.033 0.127 0.30 0.132 0.255 0.15 0.066 Determine the reaction order for each reactant and the value of the rate constant.arrow_forwardConsider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardFor a first order gas phase reaction A products, k = 7.2 104s1 at 660. K and k = 1.7 102s1 at 720. K. If the initial pressure of A is 536 torr at 295C, how long will it take for the pressure of A to decrease to 268 torr?arrow_forward
- At 620. K butadiene dimerizes at a moderate rate. The following data were obtained in an experiment involving this reaction: t(s) [C4H6] (mol/L) 0 0.01000 1000.. 0.00629 2000. 0.00459 3000. 0.00361 a. Determine the order of the reaction in butadiene. b. In how many seconds is the dimerization 1.0% complete? c. In how many seconds is the dimerization 10.0% complete? d. What is the half-life for the reaction if the initial concentration of butadiene is 0.0200 M? e. Use the results from this problem and Exercise 45 to calculate the activation energy for the dimerization of butadiene.arrow_forwardYou are studying the kinetics of the reaction H2(g) + F2(g) 2HF(g) and you wish to determine a mechanism for the reaction. You run the reaction twice by keeping one reactant at a much higher pressure than the other reactant (this lower-pressure reactant begins at 1.000 atm). Unfortunately, you neglect to record which reactant was at the higher pressure, and you forget which it was later. Your data for the first experiment are: Pressure of HF (atm) Time(min) 0 0 0.300 30.0 0.600 65.8 0.900 110.4 1.200 169.1 1.500 255.9 When you ran the second experiment (in which the higher pressure reactant was run at a much higher pressure), you determine the values of the apparent rate constants to be the same. It also turns out that you find data taken from another person in the lab. This individual found that the reaction proceeds 40.0 times faster at 55C than at 35C. You also know, from the energy-level diagram, that there are three steps to the mechanism, and the first step has the highest activation energy. You look up the bond energies of the species involved and they are (in kJ/mol): H8H (432), F8F (154), and H8F (565). a. Sketch an energy-level diagram (qualitative) that is consistent with the one described previously. Hint: See Exercise 106. b. Develop a reasonable mechanism for the reaction. c. Which reactant was limiting in the experiments?arrow_forward(Section 11-5) A rule of thumb is that for a typical reaction, if concentrations are unchanged, a 10-K rise in temperature increases the reaction rate by two to four times. Use an average increase of three times to answer the questions below. (a) What is the approximate activation energy of a typical chemical reaction at 298 K? (b) If a catalyst increases a chemical reactions rate by providing a mechanism that has a lower activation energy, then what change do you expect a 10-K increase in temperature to make in the rate of a reaction whose uncatalyzed activation energy of 75 kJ/mol has been lowered to one half this value (at 298 K) by addition of a catalyst?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY