Precalculus: Mathematics for Calculus - 6th Edition
Precalculus: Mathematics for Calculus - 6th Edition
6th Edition
ISBN: 9780840068071
Author: Stewart, James, Redlin, Lothar, Watson, Saleem
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 13T
  1. (a) Use the discriminant to determine whether the graph of the following equation is a parabola, an ellipse, or a hyperbola:

5 x 2 + 4 x y + 2 y 2 = 18

  1. (b) Use rotation of axes to eliminate the xy-term in the equation.
  2. (c) Sketch a graph of the equation.
  3. (d) Find the coordinates of the vertices of this conic (in the xy-coordinate system).

(a)

Expert Solution
Check Mark
To determine

Whether the graph of the equation 5x2+4xy+2y2=18 is a parabola, an ellipse or a hyperbola by discriminant.

Answer to Problem 13T

The graph of the equation 5x2+4xy+2y2=18 is an ellipse.

Explanation of Solution

Definition used:

Definition 1:

“The graph of the equation Ax2+Bxy+cy2+Dx+Ey+F=0 is

  1. (i) A parabola if the discriminant, B24AC=0
  2. (ii) An ellipse if the discriminant,  B24AC<0
  3. (iii) A hyperbola if the discriminant, B24AC>0 ”.

Given the equation of conic is 5x2+4xy+2y2=18 (1)

Compare the equation (1) with the equation of conic Ax2+Bxy+cy2+Dx+Ey+F=0 ,

it is clear that, A=5 , B=4 , C=2 .

Now, the discriminant,

B24AC=(4)24(4)(2)

B24AC=1640

B24AC=24<0

Since B24AC<0 by the definition stated above, equation (1) represents a ellipse

Therefore, the equation 5x2+4xy+2y2=18 is an ellipse.

(b)

Expert Solution
Check Mark
To determine

To eliminate: The xy-term is eliminated from of conic 5x2+4xy+2y2=18 .

Answer to Problem 13T

The xy-term is eliminated from of conic 5x2+4xy+2y2=18 , and the eliminated equation is 42X2+106Y216X=0 .

Explanation of Solution

Definition used:

Definition 2:

“Rotation of coordinate axes through an acute angle ϕ with the condition that, cot2ϕ=ACB , eliminates the xy-term from the general equation of conic Ax2+Bxy+cy2+Dx+Ey+F=0 ”.

Definition 3:

“Suppose x and y axes in a coordinate plane are rotated through an acute angle ϕ to produce the X and Y axes. Then the coordinates of a point (x,y) in xy-plane in terms of X and Y are given by,

x=XcosϕYsinϕ

y=Xsinϕ+ycosϕ ”.

Given the equation of conic is 5x2+4xy+2y2=18 (1)

Compare the equation (1) with the general equation of conic Ax2+Bxy+cy2+Dx+Ey+F=0 ,

It is clear that, A=5 , B=4 , C=2 .

By the definition stated above, the rotation of coordinate axes through an angle ϕ with cot2ϕ=ACB eliminates xy-term from the equation (1).

Therefore,

cot2ϕ=524

cot2ϕ=34

That is, opposite side = 4

Adjacent side 3 as shown in the figure 1.

Precalculus: Mathematics for Calculus - 6th Edition, Chapter 11, Problem 13T , additional homework tip  1

By Pythagoras theorem,

AC=(AB)2+(BC)2

AC=32+42

AC=9+16

AC=25

AC=5 .

Therefore, cos2ϕ=ABAC

cos2ϕ=35 2ϕ

Use half angle formulas,

cosϕ=1+cos2ϕ2

cosϕ=1+352

cosϕ=810

cosϕ=45

cosϕ=25 .

Similarly,

sinϕ=1cos2ϕ2

sinϕ=1352

sinϕ=210

sinϕ=15

Therefore, rotation of axes by sinϕ=15 eliminates xy-term from equation (1).

From the definition 3 stated above, if the xy-coordinates of equation (1) rotated through sinϕ=15 then, xy- coordinates in terms of X and Y are,

x=XcosϕYsinϕ

y=Xsinϕ+Ycosϕ with cosϕ=25 , sinϕ=15 .

x=25X15Y

x=15(2XY) (2)

And,

y=15X+25Y

y=15(X+2Y) (3)

Substitute equation (2) and (3) in equation (1), then obtain the resulting equation,

5x2+4xy+2y2=18

5×15(2XY)2+4×15(2XY)(X+2Y)+2×15(X+2Y)2=18

Multiply both sides by 5 ,

5×(2XY)2+4×(2XY)(X+2Y)+2×(X+2Y)2=90

5(8X24XY+Y2)+4(2X2+4XYXY2Y2)+2(X2+4XY+4Y2)=90

40X220XY+5Y2+14X2+12XY8Y2+2X2+8XY+8Y2=90

56X2+5Y2=90 . Which is an ellipse.

Therefore, the equation of conic after the elimination of xy-term is

56X2+5Y2=90 .

(c)

Expert Solution
Check Mark
To determine

To sketch:

The graph of 9x2+24xy+16y2=25 ,

Answer to Problem 13T

The graph of the equation 9x2+24xy+16y2=25 is as shown below in figure1.

Precalculus: Mathematics for Calculus - 6th Edition, Chapter 11, Problem 13T , additional homework tip  2

Explanation of Solution

The graph of the equation 5x2+4xy+2y2=18 is drawn by the use of graphing device and represented as shown below in figure 1.

Precalculus: Mathematics for Calculus - 6th Edition, Chapter 11, Problem 13T , additional homework tip  3

From the graph, it is clear that the graph of the equation 5x2+4xy+2y2=18 is an ellipse with transverse axis as the line makes an angle sinϕ=15 with x-axis. Thus, 5x2+4xy+2y2=18 represent a rotated ellipse.

(d)

Expert Solution
Check Mark
To determine

To find: The find the vertices of the conic 5x2+4xy+2y2=18 in xy coordinates.

Answer to Problem 13T

The vertices of the conic 5x2+4xy+2y2=18 in terms of xy coordinates are V1(325,625) and V2(325,625) .

Explanation of Solution

Definition used:

Definition 4:

“The equation of the ellipse with center  at the origin, vertices V(0,±a) and foci F(0,±c) is x2b2+y2a2=1 , where c=a2b2,a>b>0 ”.

The equation of conic 5x2+4xy+2y2=18 after the elimination of xy-term is

56X2+5Y2=90 (4)

Now, the equation (4) can be written by dividing both sides by 90 as follows,

5690X2+590Y2=1

715X2+118Y2=1

X2157+Y218=1 (5)

The equation (5) is of the form x2b2+y2a2=1 .

Therefore, compare X2157+Y218=1 with x2b2+y2a2=1 and conclude,

a2=18 , b2=157 .

Take positive square root for both the equations,

a=18 , b=157 .

a=9×2 , b=157 .

a=32 , b=157 .

Clearly, a=5 , b=4 and a>b>0 . Hence, by the above definition 4, the vertices of the ellipse are X2157+Y218=1 V1(0,32) and V2(0,32) .

Therefore, the vertices of the conic 5x2+4xy+2y2=18 in terms of X and Y are V1(0,32) and V2(0,32) .

From the equations (2) and (3) the x and y coordinates in terms of X and Y are,

x=15(2XY)

y=15(X+2Y)

Apply the vertices of the conic 5x2+4xy+2y2=18 in terms of X and Y on the above coordinates,

V1(15(2(0)(32)),15(0+2(32))) (Since X=0 , Y=32 for V1 )

V1(325,625) .

V1(325,625) .

And,

V2(15(2(0)(32)),15(0+2(32))) (Since X=0 , Y=32 for V2 )

V2(325,625) .

V2(325,625) .

Thus, the vertices of the conic 5x2+4xy+2y2=18 in terms of xy coordinates are V1(325,625) and V2(325,625) .

Chapter 11 Solutions

Precalculus: Mathematics for Calculus - 6th Edition

Ch. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - Prob. 15ECh. 11.1 - Prob. 16ECh. 11.1 - Prob. 17ECh. 11.1 - Prob. 18ECh. 11.1 - Prob. 19ECh. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - Prob. 22ECh. 11.1 - Prob. 23ECh. 11.1 - Prob. 24ECh. 11.1 - Prob. 25ECh. 11.1 - Prob. 26ECh. 11.1 - Prob. 27ECh. 11.1 - Prob. 28ECh. 11.1 - Prob. 29ECh. 11.1 - Prob. 30ECh. 11.1 - Prob. 31ECh. 11.1 - Prob. 32ECh. 11.1 - Prob. 33ECh. 11.1 - Prob. 34ECh. 11.1 - Prob. 35ECh. 11.1 - Prob. 36ECh. 11.1 - Prob. 37ECh. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Prob. 40ECh. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Prob. 44ECh. 11.1 - Prob. 45ECh. 11.1 - Prob. 46ECh. 11.1 - Prob. 47ECh. 11.1 - Prob. 48ECh. 11.1 - Prob. 49ECh. 11.1 - Prob. 50ECh. 11.1 - Prob. 51ECh. 11.1 - Prob. 52ECh. 11.1 - Parabolic Reflector A lamp with a parabolic...Ch. 11.1 - Satellite Dish A reflector for a satellite dish is...Ch. 11.1 - Suspension Bridge In a suspension bridge the shape...Ch. 11.1 - Reflecting Telescope The Hale telescope at the...Ch. 11.1 - Prob. 57ECh. 11.1 - Prob. 58ECh. 11.2 - An ellipse is the set of all points in the plane...Ch. 11.2 - The graph of the equation x2a2+y2b2=1 with a b 0...Ch. 11.2 - The graph of the equation x2b2+y2a2=1 with a b 0...Ch. 11.2 - Label the vertices and foci on the graphs given...Ch. 11.2 - Prob. 5ECh. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Prob. 9ECh. 11.2 - Prob. 10ECh. 11.2 - Prob. 11ECh. 11.2 - Prob. 12ECh. 11.2 - Prob. 13ECh. 11.2 - Prob. 14ECh. 11.2 - Prob. 15ECh. 11.2 - Prob. 16ECh. 11.2 - Prob. 17ECh. 11.2 - Prob. 18ECh. 11.2 - Prob. 19ECh. 11.2 - Prob. 20ECh. 11.2 - Prob. 21ECh. 11.2 - Prob. 22ECh. 11.2 - Prob. 23ECh. 11.2 - Prob. 24ECh. 11.2 - Prob. 25ECh. 11.2 - Prob. 26ECh. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - Prob. 29ECh. 11.2 - Prob. 30ECh. 11.2 - Prob. 31ECh. 11.2 - Prob. 32ECh. 11.2 - Prob. 33ECh. 11.2 - Prob. 34ECh. 11.2 - Prob. 35ECh. 11.2 - Prob. 36ECh. 11.2 - Prob. 37ECh. 11.2 - Prob. 38ECh. 11.2 - Prob. 39ECh. 11.2 - Prob. 40ECh. 11.2 - Prob. 41ECh. 11.2 - Prob. 42ECh. 11.2 - Prob. 43ECh. 11.2 - Prob. 44ECh. 11.2 - Prob. 45ECh. 11.2 - Prob. 46ECh. 11.2 - Prob. 47ECh. 11.2 - Prob. 48ECh. 11.2 - Prob. 49ECh. 11.2 - Prob. 50ECh. 11.2 - Perihelion and Aphelion The planets move around...Ch. 11.2 - Prob. 52ECh. 11.2 - Lunar Orbit For an object in an elliptical orbit...Ch. 11.2 - Plywood Ellipse A carpenter wishes to construct an...Ch. 11.2 - Sunburst Window A sunburst window above a doorway...Ch. 11.2 - Prob. 56ECh. 11.2 - Prob. 57ECh. 11.2 - Prob. 58ECh. 11.2 - Prob. 59ECh. 11.3 - A hyperbola is the set of all points in the plane...Ch. 11.3 - The graph of the equation x2a2y2b2=1 with a 0, b ...Ch. 11.3 - Prob. 3ECh. 11.3 - Label the vertices, foci, and asymptotes on the...Ch. 11.3 - Prob. 5ECh. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Prob. 10ECh. 11.3 - Prob. 11ECh. 11.3 - Prob. 12ECh. 11.3 - Prob. 13ECh. 11.3 - Prob. 14ECh. 11.3 - Prob. 15ECh. 11.3 - Prob. 16ECh. 11.3 - Prob. 17ECh. 11.3 - Prob. 18ECh. 11.3 - Prob. 19ECh. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Prob. 23ECh. 11.3 - Prob. 24ECh. 11.3 - Prob. 25ECh. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Prob. 31ECh. 11.3 - Prob. 32ECh. 11.3 - Prob. 33ECh. 11.3 - Prob. 34ECh. 11.3 - Prob. 35ECh. 11.3 - Prob. 36ECh. 11.3 - Prob. 37ECh. 11.3 - Prob. 38ECh. 11.3 - Prob. 39ECh. 11.3 - Prob. 40ECh. 11.3 - Prob. 41ECh. 11.3 - Prob. 42ECh. 11.3 - Prob. 43ECh. 11.3 - Prob. 44ECh. 11.3 - Prob. 45ECh. 11.3 - Prob. 46ECh. 11.3 - Prob. 47ECh. 11.3 - Prob. 48ECh. 11.3 - Comet Trajectories Some comets, such as Halleys...Ch. 11.3 - Ripples in Pool Two stones are dropped...Ch. 11.3 - Prob. 51ECh. 11.3 - Prob. 52ECh. 11.4 - Prob. 1ECh. 11.4 - The graphs of x2 = 12y and (x 3)2 = 12(y 1) are...Ch. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Prob. 17ECh. 11.4 - Prob. 18ECh. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Prob. 24ECh. 11.4 - Prob. 25ECh. 11.4 - Prob. 26ECh. 11.4 - Prob. 27ECh. 11.4 - Prob. 28ECh. 11.4 - Prob. 29ECh. 11.4 - Prob. 30ECh. 11.4 - Prob. 31ECh. 11.4 - Prob. 32ECh. 11.4 - Prob. 33ECh. 11.4 - Prob. 34ECh. 11.4 - Prob. 35ECh. 11.4 - Prob. 36ECh. 11.4 - Prob. 37ECh. 11.4 - Prob. 38ECh. 11.4 - Prob. 39ECh. 11.4 - Prob. 40ECh. 11.4 - Prob. 41ECh. 11.4 - Path of a Cannonball A cannon fires a cannonball...Ch. 11.4 - Orbit of a Satellite A satellite is in an...Ch. 11.4 - Prob. 44ECh. 11.5 - Suppose the x- and y-axes are rotated through an...Ch. 11.5 - Prob. 2ECh. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - Prob. 5ECh. 11.5 - Prob. 6ECh. 11.5 - Prob. 7ECh. 11.5 - Prob. 8ECh. 11.5 - Prob. 9ECh. 11.5 - Prob. 10ECh. 11.5 - Prob. 11ECh. 11.5 - Prob. 12ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 14ECh. 11.5 - Prob. 15ECh. 11.5 - Prob. 16ECh. 11.5 - Prob. 17ECh. 11.5 - Prob. 18ECh. 11.5 - Prob. 19ECh. 11.5 - Prob. 20ECh. 11.5 - Prob. 21ECh. 11.5 - Prob. 22ECh. 11.5 - Prob. 23ECh. 11.5 - Prob. 24ECh. 11.5 - Prob. 25ECh. 11.5 - Prob. 26ECh. 11.5 - Prob. 27ECh. 11.5 - Prob. 28ECh. 11.5 - Prob. 29ECh. 11.5 - Prob. 30ECh. 11.5 - Prob. 31ECh. 11.5 - Prob. 32ECh. 11.5 - Prob. 33ECh. 11.5 - Prob. 34ECh. 11.5 - Prob. 35ECh. 11.5 - Prob. 36ECh. 11.5 - Prob. 37ECh. 11.5 - Prob. 38ECh. 11.5 - Prob. 39ECh. 11.6 - Prob. 1ECh. 11.6 - Prob. 2ECh. 11.6 - Prob. 3ECh. 11.6 - Prob. 4ECh. 11.6 - Prob. 5ECh. 11.6 - Prob. 6ECh. 11.6 - Prob. 7ECh. 11.6 - Prob. 8ECh. 11.6 - Prob. 9ECh. 11.6 - Prob. 10ECh. 11.6 - Prob. 11ECh. 11.6 - Prob. 12ECh. 11.6 - Prob. 13ECh. 11.6 - Prob. 14ECh. 11.6 - Prob. 15ECh. 11.6 - Prob. 16ECh. 11.6 - Prob. 17ECh. 11.6 - Prob. 18ECh. 11.6 - Prob. 19ECh. 11.6 - Prob. 20ECh. 11.6 - Prob. 21ECh. 11.6 - Prob. 22ECh. 11.6 - Prob. 23ECh. 11.6 - Prob. 24ECh. 11.6 - Prob. 25ECh. 11.6 - Prob. 26ECh. 11.6 - Prob. 27ECh. 11.6 - Prob. 28ECh. 11.6 - Prob. 29ECh. 11.6 - Prob. 30ECh. 11.6 - Prob. 31ECh. 11.6 - Prob. 32ECh. 11.6 - Prob. 33ECh. 11.6 - Prob. 34ECh. 11.6 - Prob. 35ECh. 11.6 - Prob. 36ECh. 11.6 - Prob. 37ECh. 11.6 - Prob. 38ECh. 11.6 - Prob. 39ECh. 11.6 - Prob. 40ECh. 11.6 - Prob. 41ECh. 11.6 - Prob. 42ECh. 11.6 - Prob. 43ECh. 11.6 - Prob. 44ECh. 11.6 - Prob. 45ECh. 11.6 - Prob. 46ECh. 11.6 - Prob. 47ECh. 11 - Prob. 1RCCCh. 11 - Prob. 2RCCCh. 11 - Prob. 3RCCCh. 11 - Prob. 4RCCCh. 11 - Prob. 5RCCCh. 11 - Prob. 6RCCCh. 11 - Prob. 7RCCCh. 11 - Prob. 8RCCCh. 11 - Prob. 1RECh. 11 - Prob. 2RECh. 11 - Prob. 3RECh. 11 - Prob. 4RECh. 11 - Prob. 5RECh. 11 - Prob. 6RECh. 11 - Prob. 7RECh. 11 - Prob. 8RECh. 11 - Prob. 9RECh. 11 - Prob. 10RECh. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Prob. 13RECh. 11 - Prob. 14RECh. 11 - Prob. 15RECh. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Prob. 18RECh. 11 - Prob. 19RECh. 11 - Prob. 20RECh. 11 - Prob. 21RECh. 11 - Prob. 22RECh. 11 - Prob. 23RECh. 11 - Prob. 24RECh. 11 - Prob. 25RECh. 11 - Prob. 26RECh. 11 - Prob. 27RECh. 11 - Prob. 28RECh. 11 - Prob. 29RECh. 11 - Prob. 30RECh. 11 - Prob. 31RECh. 11 - Prob. 32RECh. 11 - Prob. 33RECh. 11 - Prob. 34RECh. 11 - Prob. 35RECh. 11 - Prob. 36RECh. 11 - Prob. 37RECh. 11 - Prob. 38RECh. 11 - Prob. 39RECh. 11 - Prob. 40RECh. 11 - Prob. 41RECh. 11 - Prob. 42RECh. 11 - Prob. 43RECh. 11 - Prob. 44RECh. 11 - Prob. 45RECh. 11 - Prob. 46RECh. 11 - Prob. 47RECh. 11 - Prob. 48RECh. 11 - Prob. 49RECh. 11 - Prob. 50RECh. 11 - Prob. 51RECh. 11 - Prob. 52RECh. 11 - Prob. 53RECh. 11 - Prob. 54RECh. 11 - Prob. 55RECh. 11 - Prob. 56RECh. 11 - Prob. 57RECh. 11 - Prob. 58RECh. 11 - Prob. 59RECh. 11 - Prob. 60RECh. 11 - Prob. 61RECh. 11 - Prob. 62RECh. 11 - Prob. 63RECh. 11 - Prob. 64RECh. 11 - Prob. 65RECh. 11 - Prob. 66RECh. 11 - Find the focus and directrix of the parabola x2 =...Ch. 11 - Prob. 2TCh. 11 - Find the vertices, foci, and asymptotes of the...Ch. 11 - Prob. 4TCh. 11 - Prob. 5TCh. 11 - Prob. 6TCh. 11 - Prob. 7TCh. 11 - Prob. 8TCh. 11 - Prob. 9TCh. 11 - Prob. 10TCh. 11 - Find an equation for the parabola with focus (2,...Ch. 11 - A parabolic reflector for a car headlight forms a...Ch. 11 - (a) Use the discriminant to determine whether the...Ch. 11 - Prob. 14TCh. 11 - Prob. 1PCh. 11 - Constructing a Hyperbola In this problem we...Ch. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Tangent Lines to a Parabola In this problem we...Ch. 11 - Prob. 6PCh. 11 - Prob. 1CRTCh. 11 - Prob. 2CRTCh. 11 - Prob. 3CRTCh. 11 - Prob. 4CRTCh. 11 - Prob. 5CRTCh. 11 - Prob. 6CRT
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
08 - Conic Sections - Hyperbolas, Part 1 (Graphing, Asymptotes, Hyperbola Equation, Focus); Author: Math and Science;https://www.youtube.com/watch?v=Ryj0DcdGPXo;License: Standard YouTube License, CC-BY