a.
To find: the eccentricity and identify the conic.
a.
Answer to Problem 33E
The eccentricity is
Explanation of Solution
Given information:
The polar equation is
Calculation: to find the eccentricity and identify the conic, first compare the polar equation with the standard equation,
The standard equation is
Now, convert the polar equation in form of standard form of equation,
By comparing both polar equation,
Thus, the eccentricity of the conic is
Because the
Thus, the conic is ellipse.
b.
To draw: the conic.
b.
Explanation of Solution
Given information:
The polar equation is
Proof: to draw the conic, use plotting point method,
Now, using the above table and join the points,
The graph can be obtained as:
Interpretation: from the above graph it can be observed that the vertices of the conic is
Chapter 11 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning