Earlier in this section, we looked at the parametric equations for a cycloid, which is the path a point on the edge of a wheel traces as the wheel rolls along a straight path. In this project we look at two different variations of the cycloid. called the curtate and prolate cycloids. First. let’s revisit the derivation of the parametric equations for a cycloid. Recall that we considered a tenacious ant trying to get home by hanging onto the edge of a bicycle tire. We have assumed the ant climbed onto the tire at the very edge, where the tire touches the ground. As the wheel rolls, the ant moves with the edge of the tire (Figure 1.13). As we have discussed, we have a lot of flexibility when parameterizing a curve. In this case we let our parameter c represent the angle the tire has rotated through. Looking at Figure 1.13, we see that after the tire has rotated through an angle of t, the Position of the center of the wheel, C = ( x c , y c ) , is given by Furthermore, letting A = ( x A , y A ) denote the position of the ant, we note that x C − x A = a sin t and y C − y A = a cos t . Then x A = x c − a sin t = a t − a sin t = a ( t − sin t ) y A = y C − a cos t = a − a cos t = a ( 1 − cos t ) . Figure 1.13 (a) The ant clings to die edge of the bicycle tile as the tire rolls along the ground. (b) Using geometry to determine the position of the ant after the tire has rotated through an angle of t. Note that these are the same parametric representations we had before, but we have now assigned a physical meaning to the parametric variable t. After a while the am is getting dizzy from going round and round on the edge of the tire. So he climbs up one of the spokes toward the center of the wheel. By climbing toward the center of the wheel. the ant has changed his path of motion. The new path has less up-and-down motion and is called a mutate cycloid (Figure 1.14). As shown in the figure. we let b denote the distance along the spoke flow the center of the wheel to the ant. As before, we let t represent the angle the fire has rotated through. Additionally, we let C = ( x C , y C ) represent the position of the center of the wheel and A = ( x A , y A ) represent the position of the ant. Figure 1.14 (a) The ant climbs up one of the spokes toward the center of the wheel. (b) The ant's path of motion after he climbs closer to the center of the wheel. This is called a mutate cycloid. (c) The new Setup, now that the ant has moved closer to the center of the wheel. 2. Use geometry to find expressions for x C − x A and for y C − y A .
Earlier in this section, we looked at the parametric equations for a cycloid, which is the path a point on the edge of a wheel traces as the wheel rolls along a straight path. In this project we look at two different variations of the cycloid. called the curtate and prolate cycloids. First. let’s revisit the derivation of the parametric equations for a cycloid. Recall that we considered a tenacious ant trying to get home by hanging onto the edge of a bicycle tire. We have assumed the ant climbed onto the tire at the very edge, where the tire touches the ground. As the wheel rolls, the ant moves with the edge of the tire (Figure 1.13). As we have discussed, we have a lot of flexibility when parameterizing a curve. In this case we let our parameter c represent the angle the tire has rotated through. Looking at Figure 1.13, we see that after the tire has rotated through an angle of t, the Position of the center of the wheel, C = ( x c , y c ) , is given by Furthermore, letting A = ( x A , y A ) denote the position of the ant, we note that x C − x A = a sin t and y C − y A = a cos t . Then x A = x c − a sin t = a t − a sin t = a ( t − sin t ) y A = y C − a cos t = a − a cos t = a ( 1 − cos t ) . Figure 1.13 (a) The ant clings to die edge of the bicycle tile as the tire rolls along the ground. (b) Using geometry to determine the position of the ant after the tire has rotated through an angle of t. Note that these are the same parametric representations we had before, but we have now assigned a physical meaning to the parametric variable t. After a while the am is getting dizzy from going round and round on the edge of the tire. So he climbs up one of the spokes toward the center of the wheel. By climbing toward the center of the wheel. the ant has changed his path of motion. The new path has less up-and-down motion and is called a mutate cycloid (Figure 1.14). As shown in the figure. we let b denote the distance along the spoke flow the center of the wheel to the ant. As before, we let t represent the angle the fire has rotated through. Additionally, we let C = ( x C , y C ) represent the position of the center of the wheel and A = ( x A , y A ) represent the position of the ant. Figure 1.14 (a) The ant climbs up one of the spokes toward the center of the wheel. (b) The ant's path of motion after he climbs closer to the center of the wheel. This is called a mutate cycloid. (c) The new Setup, now that the ant has moved closer to the center of the wheel. 2. Use geometry to find expressions for x C − x A and for y C − y A .
Earlier in this section, we looked at the parametric equations for a cycloid, which is the path a point on the edge of a wheel traces as the wheel rolls along a straight path. In this project we look at two different variations of the cycloid. called the curtate and prolate cycloids.
First. let’s revisit the derivation of the parametric equations for a cycloid. Recall that we considered a tenacious ant trying to get home by hanging onto the edge of a bicycle tire. We have assumed the ant climbed onto the tire at the very edge, where the tire touches the ground. As the wheel rolls, the ant moves with the edge of the tire (Figure 1.13).
As we have discussed, we have a lot of flexibility when parameterizing a curve. In this case we let our parameter c represent the angle the tire has rotated through. Looking at Figure 1.13, we see that after the tire has rotated through an angle of t, the Position of the center of the wheel,
C
=
(
x
c
,
y
c
)
, is given by
Furthermore, letting
A
=
(
x
A
,
y
A
)
denote the position of the ant, we note that
x
C
−
x
A
=
a
sin
t
and
y
C
−
y
A
=
a
cos
t
.
Then
x
A
=
x
c
−
a
sin
t
=
a
t
−
a
sin
t
=
a
(
t
−
sin
t
)
y
A
=
y
C
−
a
cos
t
=
a
−
a
cos
t
=
a
(
1
−
cos
t
)
.
Figure 1.13 (a) The ant clings to die edge of the bicycle tile as the tire rolls along the ground. (b) Using geometry to determine the position of the ant after the tire has rotated through an angle of t.
Note that these are the same parametric representations we had before, but we have now assigned a physical meaning to the parametric variable t.
After a while the am is getting dizzy from going round and round on the edge of the tire. So he climbs up one of the spokes toward the center of the wheel. By climbing toward the center of the wheel. the ant has changed his path of motion. The new path has less up-and-down motion and is called a mutate cycloid (Figure 1.14). As shown in the figure. we let b denote the distance along the spoke flow the center of the wheel to the ant. As before, we let t represent the angle the fire has rotated through. Additionally, we let
C
=
(
x
C
,
y
C
)
represent the position of the center of the wheel and
A
=
(
x
A
,
y
A
)
represent the position of the ant.
Figure 1.14 (a) The ant climbs up one of the spokes toward the center of the wheel. (b) The ant's path of motion after he climbs closer to the center of the wheel. This is called a mutate cycloid. (c) The new Setup, now that the ant has moved closer to the center of the wheel.
2. Use geometry to find expressions for
x
C
−
x
A
and for
y
C
−
y
A
.
Q1: A: Let M and N be two subspace of finite dimension linear space X, show that if M = N
then dim M = dim N but the converse need not to be true.
B: Let A and B two balanced subsets of a linear space X, show that whether An B and
AUB are balanced sets or nor.
Q2: Answer only two
A:Let M be a subset of a linear space X, show that M is a hyperplane of X iff there exists
ƒ€ X'/{0} and a € F such that M = (x = x/f&x) = x}.
fe
B:Show that every two norms on finite dimension linear space are equivalent
C: Let f be a linear function from a normed space X in to a normed space Y, show that
continuous at x, E X iff for any sequence (x) in X converge to Xo then the sequence
(f(x)) converge to (f(x)) in Y.
Q3: A:Let M be a closed subspace of a normed space X, constract a linear space X/M as
normed space
B: Let A be a finite dimension subspace of a Banach space X, show that A is closed.
C: Show that every finite dimension normed space is Banach space.