OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 119QRT
Interpretation Introduction
Interpretation:
The reason for the increase in the reaction rate of the given reaction in presence of light than in dark has to be suggested. Also the ineffectiveness of wavelength longer than
Concept Introduction:
Energy of the photon can be calculated using following formula.
Where,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A study of the rate of dimerization of C4H6 gave the data shown in the table:
2C4H6→C8H12
Time (s)
[C4H6] (M)
0
1.00 x 10–2
1600
5.04 x 10–3
3200
3.37 x 10–3
4800
2.53 x 10–3
6200
2.08 x 10–3
What is the instantaneous rate of dimerization at 3200 s? Create a graph of time versus [C4H6] to help answer this question.
Question 1 options:
a)
9.4 x 10-7 M s-1
b)
8.2 x 10-7 M s-1
c)
7.7 x 10-7 M s-1
d)
6.5 x 10-7 M s-1
1 Rate constants for the first-order decomposition of acetonedicarboxylic acid
CO(CH2COOH)2(aq) → CO(CH3)2(aq) + 2 CO2(g)
acetonedicarboxylic acidacetone
are k = 4.75 ×10–4 s–1 at 293 K and k = 1.63 ×10–3 at 303 K. What is the activation energy, Ea, for this reaction?
Select one:
a.
71KJ/mol
b.
81KJ/mol
c.
51KJ/mol
d.
91kJ/mol
I'm not really sure how to approach this problem. I thought you could substitute the half life equation into the integrated equation for first order reactions, but that didn't work.
Chapter 11 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
Ch. 11.1 - For the reaction of crystal violet with NaOH(aq),...Ch. 11.1 - (a) From data in Table 11.1, calculate the rate of...Ch. 11.1 - For the reaction 4NO2(g)+O2(g)2N2O5(g) (a) express...Ch. 11.1 - Instantaneous rates for the reaction of hydroxide...Ch. 11.1 - Prob. 11.3CECh. 11.2 - Prob. 11.4ECh. 11.2 - Prob. 11.3PSPCh. 11.2 - Prob. 11.5ECh. 11.3 - Prob. 11.4PSPCh. 11.3 - Prob. 11.5PSP
Ch. 11.3 - Prob. 11.6PSPCh. 11.3 - Prob. 11.7PSPCh. 11.4 - Prob. 11.6ECh. 11.4 - Prob. 11.7CECh. 11.4 - Prob. 11.8PSPCh. 11.4 - Prob. 11.8CECh. 11.5 - Prob. 11.9PSPCh. 11.5 - The frequency factor A is 6.31 108 L mol1 s1 and...Ch. 11.6 - Prob. 11.10CECh. 11.7 - Prob. 11.11ECh. 11.7 - The Raschig reaction produces the industrially...Ch. 11.7 - Prob. 11.12ECh. 11.8 - The oxidation of thallium(I) ion by cerium(IV) ion...Ch. 11.9 - Prob. 11.11PSPCh. 11.9 - Prob. 11.14CECh. 11 - An excellent way to make highly pure nickel metal...Ch. 11 - Prob. 1QRTCh. 11 - Prob. 2QRTCh. 11 - Prob. 3QRTCh. 11 - Prob. 4QRTCh. 11 - Prob. 5QRTCh. 11 - Prob. 6QRTCh. 11 - Prob. 7QRTCh. 11 - Prob. 8QRTCh. 11 - Prob. 9QRTCh. 11 - Prob. 10QRTCh. 11 - Prob. 11QRTCh. 11 - Cyclobutane can decompose to form ethylene:
The...Ch. 11 - Prob. 13QRTCh. 11 - Prob. 14QRTCh. 11 - For the reaction 2NO2(g)2NO(g)+O2(g) make...Ch. 11 - Prob. 16QRTCh. 11 - Prob. 17QRTCh. 11 - Ammonia is produced by the reaction between...Ch. 11 - Prob. 19QRTCh. 11 - Prob. 20QRTCh. 11 - The reaction of CO(g) + NO2(g) is second-order in...Ch. 11 - Nitrosyl bromide, NOBr, is formed from NO and Br2....Ch. 11 - Prob. 23QRTCh. 11 - Prob. 24QRTCh. 11 - Prob. 25QRTCh. 11 - For the reaction
these data were obtained at 1100...Ch. 11 - Prob. 27QRTCh. 11 - Prob. 28QRTCh. 11 - Prob. 29QRTCh. 11 - Prob. 30QRTCh. 11 - Prob. 31QRTCh. 11 - Prob. 32QRTCh. 11 - For the reaction of phenyl acetate with water the...Ch. 11 - When phenacyl bromide and pyridine are both...Ch. 11 - The compound p-methoxybenzonitrile N-oxide, which...Ch. 11 - Prob. 36QRTCh. 11 - Radioactive gold-198 is used in the diagnosis of...Ch. 11 - Prob. 38QRTCh. 11 - Prob. 39QRTCh. 11 - Prob. 40QRTCh. 11 - Prob. 41QRTCh. 11 - Prob. 42QRTCh. 11 - Prob. 43QRTCh. 11 - Prob. 44QRTCh. 11 - Prob. 45QRTCh. 11 - Prob. 46QRTCh. 11 - Prob. 47QRTCh. 11 - Prob. 48QRTCh. 11 - Prob. 49QRTCh. 11 - Prob. 50QRTCh. 11 - Prob. 51QRTCh. 11 - Prob. 52QRTCh. 11 - For the reaction of iodine atoms with hydrogen...Ch. 11 - Prob. 54QRTCh. 11 - The activation energy Ea is 139.7 kJ mol1 for the...Ch. 11 - Prob. 56QRTCh. 11 - Prob. 57QRTCh. 11 - Prob. 58QRTCh. 11 - Prob. 59QRTCh. 11 - Prob. 60QRTCh. 11 - Prob. 61QRTCh. 11 - Prob. 62QRTCh. 11 - Prob. 63QRTCh. 11 - Which of the reactions in Question 62 would (a)...Ch. 11 - Prob. 65QRTCh. 11 - Prob. 66QRTCh. 11 - Prob. 67QRTCh. 11 - Prob. 68QRTCh. 11 - Prob. 69QRTCh. 11 - Prob. 70QRTCh. 11 - Prob. 71QRTCh. 11 - For the reaction the rate law is Rate=k[(CH3)3CBr]...Ch. 11 - Prob. 73QRTCh. 11 - Prob. 74QRTCh. 11 - Prob. 75QRTCh. 11 - For this reaction mechanism,
write the chemical...Ch. 11 - Prob. 77QRTCh. 11 - Prob. 78QRTCh. 11 - Prob. 79QRTCh. 11 - When enzymes are present at very low...Ch. 11 - Prob. 81QRTCh. 11 - The reaction is catalyzed by the enzyme succinate...Ch. 11 - Prob. 83QRTCh. 11 - Many biochemical reactions are catalyzed by acids....Ch. 11 - Prob. 85QRTCh. 11 - Prob. 86QRTCh. 11 - Prob. 87QRTCh. 11 - Prob. 88QRTCh. 11 - Prob. 89QRTCh. 11 - Prob. 90QRTCh. 11 - Prob. 91QRTCh. 11 - Prob. 92QRTCh. 11 - Prob. 93QRTCh. 11 - Prob. 94QRTCh. 11 - Nitryl fluoride is an explosive compound that can...Ch. 11 - Prob. 96QRTCh. 11 - Prob. 97QRTCh. 11 - For a reaction involving the decomposition of a...Ch. 11 - Prob. 99QRTCh. 11 - Prob. 100QRTCh. 11 - Prob. 101QRTCh. 11 - This graph shows the change in concentration as a...Ch. 11 - Prob. 103QRTCh. 11 - Prob. 104QRTCh. 11 - Prob. 105QRTCh. 11 - Prob. 106QRTCh. 11 - Prob. 107QRTCh. 11 - Prob. 108QRTCh. 11 - Prob. 109QRTCh. 11 - Prob. 110QRTCh. 11 - Prob. 111QRTCh. 11 - Prob. 112QRTCh. 11 - Prob. 113QRTCh. 11 - Prob. 114QRTCh. 11 - Prob. 115QRTCh. 11 - Prob. 116QRTCh. 11 - Prob. 118QRTCh. 11 - Prob. 119QRTCh. 11 - In a time-resolved picosecond spectroscopy...Ch. 11 - If you know some calculus, derive the integrated...Ch. 11 - If you know some calculus, derive the integrated...Ch. 11 - (Section 11-5) A rule of thumb is that for a...Ch. 11 - Prob. 11.BCPCh. 11 - Prob. 11.CCPCh. 11 - Prob. 11.DCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Assuming that the mechanism for the hydrogenation of C2H4 given in Section 11-7 is correct, would you predict that the product of the reaction of C2H4. with D2 would be CH2DCH2D or CHD2CH3? How could the reaction of C2H4 with D2 be used to confirm the mechanism for the hydrogenation of C2H4 given in Section 11-7?arrow_forwardThe activation energy for the gas phase isomerization of cis-1,2-diphenylethene is 179 kJ. cis-C6H5 CH=CHC6H5 → trans-C6H5 CH=CHC6H5 -4 1 -1 The rate constant at 584 K is 5.64 × 10¯ S The rate constant will be 0.00603 s ▪ at | K.arrow_forwardUsing knowledge about Biophysical Chemistry (Thermodynamics and Kinetics ).How can you determine whether a reaction mechanism you predict is consistent with the experimental data? What factors would cause you to throw out your proposed mechanism and try again?arrow_forward
- The first-order decomposition of a colored chemical species, X, into colorless products is monitored with a spectrophotometer by measuring changes in absorbance over time. Species X has a molar absorptivity constant of 5.00 × 103 cm–1 M–1 and the path length of the cuvette containing the reaction mixture is 1.00 cm. The data from the experiment are given in the table below. the rate constant for this reaction is 0.0478 min [X] (M) Absorbance (Abs) Time (min) ? 0.600 0.0 4.00x10–5 0.200 35.0 3.00x10–5 0.150 44.2 1.50x10–5 0.075 ? Calculate the half-life of the reaction. Include units in your answer and what would you plot on the x and y axes to create a linear graph for this reaction?arrow_forwardThe first-order decomposition of a colored chemical species, X, into colorless products is monitored with a spectrophotometer by measuring changes in absorbance over time. Species X has a molar absorptivity constant of 5.00 × 103 cm–1 M–1 and the path length of the cuvette containing the reaction mixture is 1.00 cm. The data from the experiment are given in the table below. the rate constant for this reaction is 0.0478 min. [X] (M) Absorbance (Abs) Time (min) ? 0.600 0.0 4.00x10–5 0.200 35.0 3.00x10–5 0.150 44.2 1.50x10–5 0.075 ? Calculate the initial concentration of the unknown species. Abs = abc and calculate the time it takes for the absorbance to drop from 0.600 to 0.075arrow_forward3. The first-order decomposition of a colored chemical species, X, into colorless products is monitored with a spectrophotometer by measuring changes in absorbance over time. Species X has a molar absorptivity constant of 5.00 x 10³ cm-1 M-1 and the path length of the cuvette containing the reaction mixture is 1.00 cm. The data from the experiment are given in the table below. Calculate the initial concentration of the colored species. a. [X] (M) 4.00 x 10-5 3.00 x 10-5. 1.50 x 10-5 Absorbance 0.600 0.200 0.150 0.075 Time (min) C. Calculate the number of minutes it takes for the absorbance to drop from 0.600 to 0.075. 0.0 35.0 44.2 ? b. Calculate the rate constant for the first-order reaction using the values given for concentration and time. Include units with your answer. O2 from 4005 Jarrow_forward
- The compound NO2Cl decomposes according to the following overall equation: 2NO2Cl à 2NO2 + Cl2 The rate law is Rate=k[NO2Cl]2/[NO2]. Determine the Lewis structures for all reactants and products. Devise a plausible mechanism for this reaction, taking into account both the balanced equation and the rate law. Demonstrate that your mechanism is plausible by deriving the rate law from the mechanism. Draw the energy profile for the mechanism.arrow_forwardConventional equilibrium considerations do not apply when a reaction is driven by light absorption and the steady-state concentration of products and reactants might differ significantly from equilibrium values. For instance, suppose the reaction A → B is driven by light absorption, and that its rate is Ia, but that the reverse reaction B → A is bimolecular and second order with a rate kr[B]2. What is the stationary state concentration of B? Why does this ‘photostationary state’ differ from the equilibrium state?arrow_forwardThe isomerization reaction CH3NC → CH3CN obeys the first-order rate law, rate = k[CH3NC], in the presence of an excess of argon. Measurement at 500. K reveals that in 485 seconds, the concentration of CH3NC has decreased to 73% of its original value. Calculate the rate constant (k) of the reaction at 500. K. s−1 (The integrated form for the first-order rate law can be written in the general terms ln[A]t − ln[A]0 = −kt, where [A]0 is the initial concentration of reactant A, [A]t is the concentration of A at time t, and k is the rate constant.)arrow_forward
- k1 The mechanism A + A A2* A2* + M k2 K2 A2+ M k.1 is common in reactions of the type A + A + M → A2 + M. Is it correct? Explain it.arrow_forward1.) The anticancer drug cis-platin hydrolyzes in water with a rate constant of 1.5 ×10−3 min−1 at pH 7.0 and 25°C. Calculate the half-life for the hydrolysis reaction under these conditions. If a freshly prepared solution of cis-platin has a concentration of 0.053 M, what will be the concentration of cis-platin after 5 halflives? after 10 half-lives? 2.) Ethyl chloride decomposes to ethylene and HCl in a first-order reaction that has a rate constant of 1.6 × 10−6 s−1 at 650°C. What is the half-life for the reaction under these conditions? If a flask that originally contains 0.077 Methyl chloride is heated at 650°C, what is the concentration of ethyl chloride after 4 half-lives?arrow_forward(a) Select all of the correct statements about reaction rates from the choices below. The lower the rate of a reaction the longer it takes to reach completion.Reactions involving very unstable combinations of chemicals have large rate constants.Concentrations of homogeneous catalysts have no effect on reaction rates.Reaction rate constants are independent of temperature.The slowest step in a reaction is called the rate-determining step.A balanced chemical reaction is necessary to relate the rate of reaction to the concentration of a reactant.Slow reactions can be speeded up by raising the temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY